Skip to main content

Molecular Biology of Cannabinoid Receptors

  • Chapter
Cannabinoids

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 168))

Abstract

To date, two cannabinoid receptors have been isolated by molecular cloning. The CB1 and CB2 cannabinoid receptors are members of the G protein-coupled receptor family. There is also evidence for additional cannabinoid receptor subtypes. The CB1 and CB2 receptors recognize endogenous and exogenous cannabinoid compounds, which fall into five structurally diverse classes. Mutagenesis and molecular modeling studies have identified several key amino acid residues involved in the selective recognition of these ligands. Numerous residues involved in receptor activation have been elucidated. Regions of the CB1 receptor mediating desensitization and internalization have also been discovered. The known genetic structures of the CB1 and CB2 receptors indicate polymorphisms and multiple exons that may be involved in tissue and species-specific regulation of these genes. The cannabinoid receptors are regulated during chronic agonist exposure, and gene expression is altered in disease states. There is a complex molecular architecture of the cannabinoid receptors that allows a single receptor to recognize multiple classes of compounds and produce an array of distinct downstream effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abadji V, Lucas-Lenard J, Chin C, Kendall D (1999) Involvement of the carboxyl terminus of the third intracellular loop of the cannabinoid CB1 receptor in constitutive activation of Gs. J Neurochem 72:2032–2038

    Article  PubMed  CAS  Google Scholar 

  • Abood ME, Sauss C, Fan F, Tilton CL, Martin BR (1993) Development of behavioral tolerance to Δ9-THC without alteration of cannabinoid receptor binding or mRNA levels in whole brain. Pharmacol Biochem Behav 46:575–579

    Article  PubMed  CAS  Google Scholar 

  • Abood ME, Ditto KA, Noel MA, Showalter VM, Tao Q (1997) Isolation and expression of mouse CB1 cannabinoid receptor gene: comparison of binding properties with those of native CB1 receptors in mouse brain and N18TG2 neuroblastoma cells. Biochem Pharmacol 53:207–214

    Article  PubMed  CAS  Google Scholar 

  • Alberich Jorda M, Rayman N, Tas M, Verbakel SE, Battista N, Van Lom K, Lowenberg B, Maccarrone M, Delwel R (2004) The peripheral cannabinoid receptor Cb2, frequently expressed on AML blasts, either induces a neutrophilic differentiation block or confers abnormal migration properties in a ligand-dependent manner. Blood

    Google Scholar 

  • Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, vanTuinen P, Ledbetter DH, Barker DF, Nakamura Y, et al (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221

    PubMed  CAS  Google Scholar 

  • Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three dimensional models and computational probing of structure function relations in G protein-coupled receptors. In: Conn PM, Sealfon SM (eds) Methods in Neuroscience. Academic Press, San Diego, pp 366–428

    Google Scholar 

  • Basavarajappa BS, Hungund BL (2001) Cannabinoid receptor agonist-stimulated [35S]guanosine triphosphate γS binding in the brain of C57BL/6 and DBA/2 mice. J Neurosci Res 64:429–446

    Article  PubMed  CAS  Google Scholar 

  • Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, Romero J (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23:11136–11141

    PubMed  CAS  Google Scholar 

  • Bonhaus D, Chang L, Kwan J, Martin G (1998) Dual activation and inhibition of adenylyl cyclase by cannabinoid receptor agonists: evidence for agonist-specific trafficking of intracellular responses. J Pharmacol Exp Ther 287:884–888

    PubMed  CAS  Google Scholar 

  • Bonner T (1996) Molecular biology of cannabinoid receptors. J Neuroimmunol 69:15–23

    Google Scholar 

  • Bouaboula M, Bourrie B, Rinaldi-Carmona M, Shire D, Fur GL, Casellas P (1995) Stimulation of Cannabinoid Receptor CB1 induces krox-24 expression in human astrocytoma cells. J Biol Chem 270:13973–13980

    PubMed  CAS  Google Scholar 

  • Bouaboula M, Perrachon S, Milligan L, Canat X, Rinaldi-Carmona M, Portier M, Barth F, Calandra B, Pecceu F, Lupker J, Maffrand J-P, LeFur G, Casellas P (1997) A selective inverse agonist for central cannabinoid receptor inhibits mitogen-activated protein kinase activation stimulated by insulin or insulin-like growth factor 1. J Biol Chem 272:22330–22339

    Article  PubMed  CAS  Google Scholar 

  • Bouaboula M, Desnoyer N, Carayon P, Combes T, Casellas P (1999a) Gi protein modulation induced by a selective inverse agonist for the peripheral cannabinoid receptor CB2: implication for intracellular signalization cross-regulation. Mol Pharmacol 55:473–480

    PubMed  CAS  Google Scholar 

  • Bouaboula M, Dussossoy D, Casellas P (1999b) Regulation of peripheral cannabinoid receptor CB2 phosphorylation by the inverse agonist SR 144528. Implications for receptor biological responses. J Biol Chem 274:20397–20405

    Article  PubMed  CAS  Google Scholar 

  • Breivogel C, Childers S, Deadwyler S, Hampson R, Vogt L, Sim-Selley L (1999) Chronic delta9-tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G proteins in rat brain. J Neurochem 73:2447–2459

    Article  PubMed  CAS  Google Scholar 

  • Breivogel CS, Griffin G, Di Marzo V, Martin BR (2001) Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol Pharmacol 60:155–163

    PubMed  CAS  Google Scholar 

  • Brown SM, Wager-Miller J, Mackie K (2002) Cloning and molecular characterization of the rat CB2 cannabinoid receptor. Biochim Biophys Acta 1576:255–264

    PubMed  CAS  Google Scholar 

  • Buckley NE, McCoy KL, Mezey E, Bonner T, Zimmer A, Felder CC, Glass M (2000) Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor. Eur J Pharmacol 396:141–149

    Article  PubMed  CAS  Google Scholar 

  • Burley S, Petsko G (1985) Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229:23–28

    PubMed  CAS  Google Scholar 

  • Caenazzo L, Hoehe M, Hsieh W, Berrettini W, Bonner T, Gershon E (1991) HindIII identifies a two allele DNA polymorphism of the human cannabinoid receptor gene (CNR). Nucleic Acids Res 19:4798

    PubMed  CAS  Google Scholar 

  • Chakrabarti A, Onaivi ES, Chaudhuri G (1995) Cloning and sequencing of a cDNA encoding the mouse brain-type cannabinoid receptor protein. DNA Seq 5:385–388

    PubMed  CAS  Google Scholar 

  • Chen J, Paredes W, Li J, Smith D, Lowinson J, Gardner E (1990) Đ9-Tetrahydrocannabinol produces naloxone-blockable enhancement of presynaptic basal dopamine efflux in nucleus accumbens of conscious, freely-moving rats as measured by intracerebral microdialysis. Psychopharmacology (Berl) 102:156–162

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Paredes W, Lowinson J, Gardner E (1991) Strain-specific facilitation of dopamine efflux by delta 9-tetrahydrocannabinol in the nucleus accumbens of rat: an in vivo microdialysis study. Neurosci Lett 129:136–180

    Article  PubMed  CAS  Google Scholar 

  • Chin C, Abadji V, Lucas-Lenard J, Kendall D (1998) Ligand binding and modulation of cyclic AMP levels depends on the chemical nature of residue 192 of the human cannabinoid receptor 1. J Neurochem 70:366–373

    PubMed  CAS  Google Scholar 

  • Chin C, Murphy J, Huffman J, Kendall D (1999) The third transmembrane helix of the cannabinoid receptor plays a role in the selectivity of aminoalkylindoles for CB2, peripheral cannabinoid receptor. J Pharmacol Exp Ther 291:837–844

    PubMed  CAS  Google Scholar 

  • Comings D, Muhleman D, Gade R, Johnson P, Verde R, Saucier G, MacMurray J (1997) Cannabinoid receptor gene (CNR1): association with i.v. drug use. Mol Psychiatry 2:161–168

    PubMed  CAS  Google Scholar 

  • Cottone E, Salio C, Conrath M, Franzoni MF (2003) Xenopus laevis CB1 cannabinoid receptor: molecular cloning and mRNA distribution in the central nervous system. J Comp Neurol 464:487–496

    Article  PubMed  CAS  Google Scholar 

  • Coutts A, Brewster N, Ingram T, Razdan R, Pertwee R (2000) Comparison of novel cannabinoid partial agonists and SR141716A in the guinea-pig small intestine. Br J Pharmacol 129:645–652

    Article  PubMed  CAS  Google Scholar 

  • De Vries TJ, Shaham Y, Homberg JR, Crombag H, Schuurman K, Dieben J, Vanderschuren LJ, Schoffelmeer AN (2001) A cannabinoid mechanism in relapse to cocaine seeking. Nat Med 7:1151–1154

    PubMed  Google Scholar 

  • Deutsch DG, Chin SA (1993) Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol 46:791–796

    Article  PubMed  CAS  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    PubMed  CAS  Google Scholar 

  • Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz J-C, Piomelli D (1994) Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372:686–691

    PubMed  Google Scholar 

  • Di Marzo V, Breivogel CS, Tao Q, Bridgen DT, Razdan RK, Zimmer AM, Zimmer A, Martin BR (2000) Levels, metabolism, and pharmacological activity of anandamide in CB(1) cannabinoid receptor knockout mice: evidence for non-CB(1), non-CB(2) receptor-mediated actions of anandamide in mouse brain. J Neurochem 75:2434–2444

    PubMed  Google Scholar 

  • Di Marzo V, Melck D, Orlando P, Bisogno T, Zagoory O, Bifulco M, Vogel Z, De Petrocellis L (2001) Palmitoylethanolamide inhibits the expression of fatty acid amide hydrolase and enhances the anti-proliferative effect of anandamide in human breast cancer cells. Biochem J 358:249–255

    PubMed  Google Scholar 

  • Di Marzo V, De Petrocellis L, Fezza F, Ligresti A, Bisogno T (2002) Anandamide receptors. Prostaglandins Leukot Essent Fatty Acids 66:377–391

    PubMed  Google Scholar 

  • Dill JA, Howlett AC (1988) Regulation of adenylate cyclase by chronic exposure to cannabimimetic drugs. J Pharmacol Exp Ther 244:1157–1163

    PubMed  CAS  Google Scholar 

  • Eissenstat MA, Bell MR, D’Ambra TE, Alexander EJ, Daum SJ, Ackerman JH, Gruett MD, Kumar V, Estep KG, Olefirowicz EM et al (1995) Aminoalkylindoles: structure-activity relationships of novel cannabinoid mimetics. J Med Chem 38:3094–3105

    Article  PubMed  CAS  Google Scholar 

  • Elphick MR (2002) Evolution of cannabinoid receptors in vertebrates: identification of a CB(2) gene in the puffer fish Fugu rubripes. Biol Bull 202:104–107

    PubMed  CAS  Google Scholar 

  • Elphick MR, Satou Y, Satoh N (2003) The invertebrate ancestry of endocannabinoid signalling: an orthologue of vertebrate cannabinoid receptors in the urochordate Ciona intestinalis. Gene 302:95–101

    Article  PubMed  CAS  Google Scholar 

  • Facci L, Toso RD, Romanello S, Buriani A, Skaper SD, Leon A (1995) Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci USA 92:3376–3380

    PubMed  CAS  Google Scholar 

  • Fan F, Compton DR, Ward S, Melvin L, Martin BR (1994) Development of cross-tolerance between Δ9-THC, CP 55,940 and WIN 55,212. J Pharmacol Exp Ther 271:1383–1390

    PubMed  CAS  Google Scholar 

  • Fan F, Tao Q, Abood M, Martin BR (1996) Cannabinoid receptor down-regulation without alteration of the inhibitory effect of CP 55,940 on adenylyl cyclase in the cerebellum of CP 55,940-tolerant mice. Brain Res 706:13–20

    Article  PubMed  CAS  Google Scholar 

  • Felder CC, Joyce KE, Briley EM, Mansouri J, Mackie K, Blond O, Lai Y, Ma AL, Mitchell RL (1995) Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol 48:443–450

    PubMed  CAS  Google Scholar 

  • Feng W, Song ZH (2001) Functional roles of the tyrosine within the NP(X)(n)Y motif and the cysteines in the C-terminal juxtamembrane region of the CB2 cannabinoid receptor. FEBS Lett 501:166–170

    Article  PubMed  CAS  Google Scholar 

  • Feng W, Song ZH (2003) Effects of D3.49A, R3.50A, and A6.34E mutations on ligand binding and activation of the cannabinoid-2 (CB2) receptor. Biochem Pharmacol 65:1077–1085

    Article  PubMed  CAS  Google Scholar 

  • Fox SH, Henry B, Hill M, Crossman A, Brotchie J (2002) Stimulation of cannabinoid receptors reduces levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord 17:1180–1187

    PubMed  Google Scholar 

  • Franklin A, Parmentier-Batteur S, Walter L, Greenberg DA, Stella N (2003) Palmitoylethanolamide increases after focal cerebral ischemia and potentiates microglial cell motility. J Neurosci 23:7767–7775

    PubMed  CAS  Google Scholar 

  • Fride E, Mechoulam R (1993) Pharmacological activity of the cannabinoid receptor agonist, anandamide, a brain constituent. Eur J Pharmacol 231:313–314

    Article  PubMed  CAS  Google Scholar 

  • Gadzicki D, Muller-Vahl K, Stuhrmann M (1999) A frequent polymorphism in the coding exon of the human cannabinoid receptor (CNR1) gene. Mol Cell Probes 13:321–323

    Article  PubMed  CAS  Google Scholar 

  • Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P, Bouaboula M, Shire D, LeFur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61

    Article  PubMed  CAS  Google Scholar 

  • Garcia DE, Brown S, Hille B, Mackie K (1998) Protein kinase C disrupts cannabinoid actions by phosphorylation of the CB1 cannabinoid receptor. J Neurosci 18:2834–2841

    PubMed  CAS  Google Scholar 

  • Gardner E, Lowinson J (1991) Marijuana’s Interaction with Brain Reward Systems: Update 1991. Pharmacol Biochem Behav 40:571–580

    Article  PubMed  CAS  Google Scholar 

  • Gareau Y, Dufresne C, Gallant M, Rochette C, Sawyer N, Slipetz DM, Tremblay N, Weech PK, Metters KM, Labelle M (1996) Structure activity relationships of tetrahydrocannabinol analogues on human cannabinoid receptors. Bioorg Med Chem Lett 6:189–194

    Article  CAS  Google Scholar 

  • Gerard CM, Mollereau C, Vassart G, Parmentier M (1991) Molecular cloning of a human cannabinoid receptor which is also expressed in testis. Biochem J 279:129–134

    PubMed  CAS  Google Scholar 

  • Glass M, Felder CC (1997) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J Neurosci 17:5327–5333

    PubMed  CAS  Google Scholar 

  • Glass M, Northup J (1999) Agonist selective regulation of G proteins by cannabinoid CB(1) and CB(2) receptors. Mol Pharmacol 56:1362–1369

    PubMed  CAS  Google Scholar 

  • Glass M, Faull R, Dragunow M (1993) Loss of Cannabinoid Receptors in the Substantia Nigra in Huntington’s Disease. Neuroscience 56:523–527

    Article  PubMed  CAS  Google Scholar 

  • Gouldson P, Calandra B, Legoux P, Kerneis A, Rinaldi-Carmona M, Barth F, Le Fur G, Ferrara P, Shire D (2000) Mutational analysis and molecular modelling of the antagonist SR 144528 binding site on the human cannabinoid CB(2) receptor. Eur J Pharmacol 401:17–25

    Article  PubMed  CAS  Google Scholar 

  • Griffin G, Wray E, Tao Q, McAllister S, Rorrer W, Aung M, Martin B, Abood M (1999) Evaluation of the cannabinoid CB2 receptor-selective antagonist, SR144528: further evidence for cannabinoid CB2 receptor absence in the rat central nervous system. Eur J Pharmacol 377:117–125

    Article  PubMed  CAS  Google Scholar 

  • Griffin G, Tao Q, Abood M (2000) Cloning and pharmacological characterization of the Rat CB2 cannabinoid receptor. J Pharmacol Exp Ther 292

    Google Scholar 

  • Griffin GR, Atkinson PJ, Showalter VM, Martin BR, Abood ME (1998) Evaluation of cannabinoid receptor agonists and antagonists using the guanosine-5’-O-(3-[35S]thio)-triphosphate binding assay in rat cerebellarmembranes. J Pharmacol Exp Ther 285:553–560

    PubMed  CAS  Google Scholar 

  • Hajos N, Ledent C, Freund TF (2001) Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus. Neuroscience 106:1–4

    PubMed  CAS  Google Scholar 

  • Hanus L, Gopher A, Almog S, Mechoulam R (1993) Two new unsaturated fatty acid ethanolamides in brain that bind to the cannabinoid receptor. J Med Chem 36:3032–3034

    Article  PubMed  CAS  Google Scholar 

  • Hanus L, Breuer A, Tchilibon S, Shiloah S, Goldenberg D, Horowitz M, Pertwee RG, Ross RA, Mechoulam R, Fride E (1999) HU-308: a specific agonist for CB(2), a peripheral cannabinoid receptor. Proc Natl Acad Sci USA 96:14228–14233

    Article  PubMed  CAS  Google Scholar 

  • Hanus L, Abu-Lafi S, Fride E, Breuer A, Vogel Z, Shalev DE, Kustanovich I, Mechoulam R (2001) 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci USA 98:3662–3665

    Article  PubMed  CAS  Google Scholar 

  • Hillard C, Muthian S, Kearn C (1999) Effects of CB(1) cannabinoid receptor activation on cerebellar granule cell nitric oxide synthase activity. FEBS Lett 459:277–281

    Article  PubMed  CAS  Google Scholar 

  • Hilliard CJ, Campbell WB (1997) Biochemistry and pharmacology of arachidonylethanolamide, a putative endogenous cannabinoid. J Lipid Res 38:2383–2398

    Google Scholar 

  • Ho BY, Zhao J (1996) Determination of the cannabinoid receptors in mouse x rat hybridoma NG108-15 cells and rat GH4C1 cells. Neurosci Lett 212:123–126

    Article  PubMed  CAS  Google Scholar 

  • Houston DB, Howlett AC (1998) Differential receptor-G-protein coupling evoked by dissimilar cannabinoid receptor agonists. Cell Signal 10:667–674

    Article  PubMed  CAS  Google Scholar 

  • Howlett AC (1995) Pharmacology of cannabinoid receptors. Annu Rev Pharmacol Toxicol 35:607–634

    Article  PubMed  CAS  Google Scholar 

  • Howlett A, Song C, Berglund B, Wilken G, Pigg J (1998) Characterization of CB1 cannabinoid receptors using receptor peptide fragments and site-directed antibodies. Mol Pharmacol 53:504–510

    PubMed  CAS  Google Scholar 

  • Howlett AC, Johnson MR, Melvin LS, Milne GM (1988) Nonclassical cannabinoid analgetics inhibit adenylate cyclase: development of a cannabinoid receptor model. Mol Pharmacol 33:297–302

    PubMed  CAS  Google Scholar 

  • Hsieh C, Brown S, Derleth C, Mackie K (1999) Internalization and recycling of the CB1 cannabinoid receptor. J Neurochem 73:493–501

    Article  PubMed  CAS  Google Scholar 

  • Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros TJ, Krey JF, Chu CJ, Miller JD, Davies SN, Geppetti P, Walker JM, Di Marzo V (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 99:8400–8405

    PubMed  CAS  Google Scholar 

  • Huffman JW (1999) Cannabimimetic indoles, pyrroles and indenes. Curr Med Chem 6:705–720

    PubMed  CAS  Google Scholar 

  • Huffman JW, Dai D, Martin BR, Compton DR (1994) Design, synthesis and pharmacology of cannabimimetic indoles. Bioorg Med Chem Lett 4

    Google Scholar 

  • Huffman JW, Yu S, Showalter V, Abood ME, Wiley JL, Compton DR, Martin BR, Bramblett RD, Reggio PH (1996) Synthesis and pharmacology of a very potent cannabinoid lacking a phenolic hydroxyl with high affinity for the CB2 receptor. J Med Chem 39:3875–3877

    Article  PubMed  CAS  Google Scholar 

  • Huffman JW, Liddle J, Yu S, Aung MM, Abood ME, Wiley JL, Martin BR (1999) 3-(1’,1’-Dimethylbutyl)-1-deoxy-delta8-THC and related compounds: synthesis of selective ligands for the CB2 receptor. Bioorg Med Chem 7:2905–2914

    PubMed  CAS  Google Scholar 

  • Hungund BL, Basavarajappa BS (2000) Distinct differences in the cannabinoid receptor binding in the brain of C57BL/6 and DBA/2 mice, selected for their differences in voluntary ethanol consumption. J Neurosci Res 60:122–128

    Article  PubMed  CAS  Google Scholar 

  • Hurst DP, Lynch DL, Barnett-Norris J, Hyatt SM, Seltzman HH, Zhong M, Song ZH, Nie J, Lewis D, Reggio PH (2002) N-(Piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-p yrazole-3-carboxamide (SR141716A) interaction with LYS 3.28(192) is crucial for its inverse agonism at the cannabinoid CB1 receptor. Mol Pharmacol 62:1274–1287

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim MM, Deng H, Zvonok A, Cockayne DA, Kwan J, Mata HP, Vanderah TW, Lai J, Porreca F, Makriyannis A, Malan TP Jr (2003) Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci USA 100:10529–10533

    Article  PubMed  CAS  Google Scholar 

  • Ishac EJN, Jiang L, Lake KD, Varga K, Abood ME, Kunos G (1996) Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CB1 receptors on peripheral sympathetic nerves. Br J Pharmacol 118:2023–2028

    PubMed  CAS  Google Scholar 

  • Jarai Z, Wagner J, Varga K, Lake K, Compton D, Martin B, Zimmer A, Bonner T, Buckley N, Mezey E, Razdan R, Zimmer A, Kunos G (1999) Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. Proc Natl Acad Sci USA 96:14136–14141

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Brown S, Roche J, Hsieh C, Celver J, Kovoor A, Chavkin C, Mackie K (1999) Distinct domains of the CB1 cannabinoid receptor mediate desensitization and internalization. J Neurosci 19:3773–3780

    PubMed  CAS  Google Scholar 

  • Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  PubMed  CAS  Google Scholar 

  • Jung M, Calassi R, Rinaldi-Carmona M, Chardenot P, LeFur G, Soubrie P, Oury-Donat F (1997) Characterization of CB1 receptors on rat neuronal cell cultures: binding and functional studies using the selective receptor antagonist SR 141716A. J Neurochem 68:402–409

    PubMed  CAS  Google Scholar 

  • Kaminski NE, Abood ME, Kessler FK, Martin BR, Schatz AR (1992) Identification of a functionally relevant cannabinoid receptor on mouse spleen cells that is involved in cannabinoid-mediated immune modulation. Mol Pharmacol 42:736–742

    PubMed  CAS  Google Scholar 

  • Kathmann M, Haug K, Heils A, Nothen M, Schlicker E (2000) Exchange of three amino acids in the cannabinoid CB1 receptor (CNR1) of an epilepsy patient 2000 Symposium on the Cannabinoids. International Cannabinoid Research Society, Burlington, Vermont

    Google Scholar 

  • Kearn C, Greenberg M, DiCamelli R, Kurzawa K, Hillard C (1999) Relationships between ligand affinities for the cerebellar cannabinoid receptor CB1 and the induction of GDP/GTP exchange. J Neurochem 72:2379–2387

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Alexander MD, Bell MR, Eissenstat MA, Casiano FM, Chippari SM, Haycock DA, Lutinger DA, Kuster JE, Miller MS, Stevenson JI, Ward SJ (1995) Morpholinoalkylindenes as antinociceptive agents: novel cannabinoid receptor agonists. Bioorg Med Chem Lett 5:381–386

    CAS  Google Scholar 

  • Lambert D, DiPaolo F, Sonveaux P, Kanyonyo M, Govaerts S, Hermans E, Bueb J, Delzenne N, Tschirhart E (1999) Analogues and homologues of N-palmitoylethanolamide, a putative endogenous CB(2) cannabinoid, as potential ligands for the cannabinoid receptors. Biochim Biophys Acta 1440:266–274

    PubMed  CAS  Google Scholar 

  • Lamlum H, Papadopoulou A, Ilyas M, Rowan A, Gillet C, Hanby A, Talbot I, Bodmer W, Tomlinson I (2000) APC mutations are sufficient for the growth of early colorectal adenomas. Proc Natl Acad Sci USA 97:2225–2228

    Article  PubMed  CAS  Google Scholar 

  • Landsman RS, Burkey TH, Consroe P, Roeske WR, Yamamura HI (1997) SR141716A is an inverse agonist at the human cannabinoid CB1 receptor. Eur J Pharmacol 334:R1–R2

    Article  PubMed  CAS  Google Scholar 

  • Ledent C, Valverde O, Cossu G, Petitet F, Aubert J, Beslot F, Bohme G, Imperato A, Pedrazzini T, Roques B, Vassart G, Fratta W, Parmentier M (1999) Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283:401–404

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Cotecchia S, Samama P, Costa T (1993) Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 14:303–307

    Article  PubMed  CAS  Google Scholar 

  • Lepore M, Liu X, Savage V, Matalon D, Gardner E (1996) Genetic differences in delta 9-tetrahydrocannabinol-induced facilitation of brain stimulation reward as measured by a rate-frequency curve-shift electrical brain stimulation paradigm in three different rat strains. Life Sci 58:PL365–PL372

    Article  PubMed  CAS  Google Scholar 

  • Leurs R, Smit M, Alewijnse A, Timmerman H (1998) Agonist-independent regulation of constitutively active G-protein-coupled receptors. Trends Biochem Sci 23:418–422

    Article  PubMed  CAS  Google Scholar 

  • Luttrell L, Ferguson S, Daaka Y, Miller W, Maudsley S, Rocca GD, Lin F, Kawakatsu H, Owada K, Luttrell D, Caron M, Lefkowitz R (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283:655–661

    Article  PubMed  CAS  Google Scholar 

  • Mackie K, Hille B (1992) Cannabinoids inhibit N-type calcium channels in neuroblastomaglioma cells. Proc Natl Acad Sci USA 89:3825–3829

    PubMed  CAS  Google Scholar 

  • Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgansberger W, Di Marzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534

    Article  PubMed  CAS  Google Scholar 

  • Martin BR, Dewey WL, Harris LS, Beckner JS (1976) 3H-Δ9-tetrahydrocannabinol tissue and subcellular distribution in the central nervous system and tissue distribution in peripheral organs of tolerant and nontolerant dogs. J Pharmacol Exp Ther 196:128–144

    PubMed  CAS  Google Scholar 

  • Mascia M, Obinu M, Ledent C, Parmentier M, Bohme G, Imperato A, Fratta W (1999) Lack of morphine-induced dopamine release in the nucleus accumbens of cannabinoid CB(1) receptor knockout mice. Eur J Pharmacol 383:R1–R2

    Article  PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    Article  PubMed  CAS  Google Scholar 

  • McAllister S, Griffin G, Satin L, Abood M (1999) Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a Xenopus oocyte expression system. J Pharmacol Exp Ther 291:618–626

    PubMed  CAS  Google Scholar 

  • McAllister SD, Tao Q, Barnett-Norris J, Buehner K, Hurst DP, Guarnieri F, Reggio PH, Nowell Harmon KW, Cabral GA, Abood ME (2002) A critical role for a tyrosine residue in the cannabinoid receptors for ligand recognition. Biochem Pharmacol 63:2121–2136

    Article  PubMed  CAS  Google Scholar 

  • McAllister SD, Rizvi G, Anavi-Goffer S, Hurst DP, Barnett-Norris J, Lynch DL, Reggio PH, Abood ME (2003) An aromatic microdomain at the cannabinoid CB(1) receptor constitutes an agonist/inverse agonist binding region. J Med Chem 46:5139–5152

    Article  PubMed  CAS  Google Scholar 

  • McAllister SD, Hurst DP, Barnett-Norris J, Lynch D, Reggio PH, Abood ME (2004) Structural mimicry in class A G protein-coupled receptor rotamer toggle switches: the importance of the F3.36(201)/W6.48(357) interaction in cannabinoid CB1 receptor activation. J Biol Chem 279:48024–48037

    Article  PubMed  CAS  Google Scholar 

  • Mechoulam R, Hanus L, Ben-Shabat S, Fride E, Weidenfeld J (1994) The anandamides, a family of endogenous cannabinoid ligands—chemical and biological studies. Neuropsychopharmacology 10:145S

    Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, Pertwee RG, Griffin G, Bayewitch M, Barg J, Vogel Z (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    Article  PubMed  CAS  Google Scholar 

  • Monory K, Tzavara ET, Lexime J, Ledent C, Parmentier M, Borsodi A, Hanoune J (2002) Novel, not adenylyl cyclase-coupled cannabinoid binding site in cerebellum of mice. Biochem Biophys Res Commun 292:231–235

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Cowsik S, Lynn A, Welsh W, Howlett A (1999) Regulation of Gi by the CB1 cannabinoid receptor C-terminal juxtamembrane region: structural requirements determined by peptide analysis. Biochemistry 38:3447–3455

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, McIntosh H, Houston D, Howlett A (2000) The CB(1) cannabinoid receptor juxtamembrane C-terminal peptide confers activation to specific G proteins in brain. Mol Pharmacol 57:162–170

    PubMed  CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    Article  PubMed  CAS  Google Scholar 

  • Murphy JW, Kendall DA (2003) Integrity of extracellular loop 1 of the human cannabinoid receptor 1 is critical for high-affinity binding of the ligand CP 55,940 but not SR141716A. Biochem Pharmacol 65:1623–1631

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409:614-618

    Google Scholar 

  • Nie J, Lewis DL (2001a) The proximal and distal C-terminal tail domains of the CB1 cannabinoid receptor mediate G protein coupling. Neuroscience 107:161–167

    Article  PubMed  CAS  Google Scholar 

  • Nie J, Lewis DL (2001b) Structural domains of the CB1 cannabinoid receptor that contribute to constitutive activity and G-protein sequestration. J Neurosci 21:8758–8764

    PubMed  CAS  Google Scholar 

  • O’Brien C (1996) Drug addiction and drug abuse. In: Hardman J, Limbird L (eds) Goodman and Gilman’s the pharmacological basis of therapeutics. Mc-Graw Hill, New York, pp 557–577

    Google Scholar 

  • Offertaler L, Mo FM, Batkai S, Liu J, Begg M, Razdan RK, Martin BR, Bukoski RD, Kunos G (2003) Selective ligands and cellular effectors of a G protein-coupled endothelial cannabinoid receptor. Mol Pharmacol 63:699–705

    Article  PubMed  CAS  Google Scholar 

  • Onaivi E, Chakrabarti A, Gwebu E, Chaudhuri G (1995) Neurobehavioral effects of delta 9-THC and cannabinoid (CB1) receptor gene expression in mice. Behav Brain Res 72:115–125

    Article  PubMed  CAS  Google Scholar 

  • Oviedo A, Glowa J, Herkenham M (1993) Chronic cannabinoid administration alters cannabinoid receptor binding in rat brain: a quantitative autoradiographic study. Brain Res 616:293–302

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289:739–745

    Article  PubMed  CAS  Google Scholar 

  • Pan X, Ikeda S, Lewis D (1998) SR 141716A acts as an inverse agonist to increase neuronal voltage-dependent Ca2+ currents by reversal of tonic CB1 cannabinoid receptor activity. Mol Pharmacol 54:1064–1072

    PubMed  CAS  Google Scholar 

  • Pertwee RG (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74:129–180

    Article  PubMed  CAS  Google Scholar 

  • Piomelli D, Beltramo M, Glasnapp S, Lin S, Goutopoulos A, Xie X, Makriyannis A (1999) Structural determinants for recognition and translocation by the anandamide transporter. Proc Natl Acad Sci USA 96:5802–5807

    Article  PubMed  CAS  Google Scholar 

  • Porter AC, Sauer JM, Knierman MD, Becker GW, Berna MJ, Bao J, Nomikos GG, Carter P, Bymaster FP, Leese AB, Felder CC (2002) Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther 301:1020–1024

    Article  PubMed  CAS  Google Scholar 

  • Reggio P (1999) Ligand-ligand and ligand-receptor approaches tomodeling the cannabinoid CB1 and CB2 receptors: achievements and challenges. Curr Med Chem 8:665–683

    Google Scholar 

  • Rhee M-H, Nevo I, Bayewitch ML, Zagoory O, Vogel Z (2000a) Functional role of tryptophan residues in the fourth transmembrane domain of the CB2 cannabinoid receptor. J Neurochem 75:2485–2491

    Article  PubMed  CAS  Google Scholar 

  • Rhee MH, Nevo I, Levy R, Vogel Z (2000b) Role of the highly conserved Asp-Arg-Tyr motif in signal transduction of the CB2 cannabinoid receptor. FEBS Lett 466:300–304

    Article  PubMed  CAS  Google Scholar 

  • Richfield E, Herkenham M (1994) Selective vulnerability in Huntington’s disease: preferential loss of cannabinoid receptors in lateral globus pallidus. Ann Neurol 36:577–584

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi-Carmona M, Barth F, Heaulme M, Shire D, Calandra B, Congy C, Martinez S, Maruani J, Neliat G, Caput D, Ferrar P, Soubrie P, Breliere JC, Fur GL (1994) SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 350:240–244

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi-Carmona M, Barth F, Millan J, Derocq JM, Casellas P, Congy C, Oustric D, Sarran M, Bouaboula M, Calandra B, Portier M, Shire D, Breliere JC, Fur GL (1998a) SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. J Pharmacol Exp Ther 284:644–650

    PubMed  CAS  Google Scholar 

  • Rinaldi-Carmona M, Duigou AL, Oustric D, Barth F, Bouaboula M, Carayon P, Casellas P, Fur GL (1998b) Modulation of CB1 cannabinoid receptor functions after a long-term exposure to agonist or inverse agonist in the Chinese hamster ovary cell expression system. J Pharmacol Exp Ther 287:1038–1047

    PubMed  CAS  Google Scholar 

  • Roche J, Bounds S, Brown S, Mackie K (1999) A mutation in the second transmembrane region of the CB1 receptor selectively disrupts G protein signaling and prevents receptor internalization. Mol Pharmacol 56:611–618

    PubMed  CAS  Google Scholar 

  • Rodriguez de Fonseca F, Gorriti M, Fernandez RJ, Palomo T, Ramos JA (1994) Down regulation of rat brain cannabinoid binding sties after chronic Δ9-tetrahydrocannabinol treatment. Pharmacol Biochem Behav 47:33–40

    Google Scholar 

  • Romero J, Garcia-Palomero E, Castro J, Garcia-Gil L, Ramos J, Fernandez-Ruiz J (1997) Effects of chronic exposure to delta9-tetrahydrocannabinol on cannabinoid receptor binding and mRNA levels in several rat brain regions. Brain Res Mol Brain Res 46:100–108

    PubMed  CAS  Google Scholar 

  • Romero J, Berrendero F, Garcia-Gil L, Ramos J, Fernandez-Ruiz J (1998a) Cannabinoid receptor and WIN-55,212-2-stimulated [35S]GTP gamma S binding and cannabinoid receptor mRNA levels in the basal ganglia and the cerebellum of adult male rats chronically exposed to delta 9-tetrahydrocannabinol. J Mol Neurosci 11:109–119

    PubMed  CAS  Google Scholar 

  • Romero J, Berrendero F, Manzanares J, Perez A, Corchero J, Fuentes J, Fernandez-Ruiz J, Ramos J (1998b) Time-course of the cannabinoid receptor down-regulation in the adult rat brain caused by repeated exposure to delta9-tetrahydrocannabinol. Synapse 30:298–308

    Article  PubMed  CAS  Google Scholar 

  • Selley DE, Stark S, Sim LJ, Childers SR (1996) Cannabinoid receptor stimulation of guanosine-5’-O-(3-[35S]thio)triphosphate binding in rat brain membranes. Life Sci 59:659–668

    Article  PubMed  CAS  Google Scholar 

  • Shire D, Calandra B, Delpech M, Dumont X, Kaghad M, Fur GL, Caput D, Ferrara P (1996a) Structural features of the central cannabinoid CB1 receptor involved in the binding of the specific CB1 antagonist SR 141716A. J Biol Chem 271:6941–6946

    PubMed  CAS  Google Scholar 

  • Shire D, Calandra B, Rinaldi-Carmona M, Oustric D, Pessegue B, Bonnin-Cabanne O, Fur GL, Caput D, Ferrara P (1996b) Molecular cloning, expression and function of the murine CB2 peripheral cannabinoid receptor. Biochim Biophys Acta 1307:132–136

    PubMed  Google Scholar 

  • Shire D, Calandra B, Bouaboula M, Barth F, Rinaldi-Carmona M, Casellas P, Ferrara P (1999) Cannabinoid receptor interactions with the antagonists SR 141716A and SR 144528. Life Sci 65:627–635

    Article  PubMed  CAS  Google Scholar 

  • Showalter VM, Compton DR, Martin BR, Abood ME (1996) Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): Identification of cannabinoid receptor subtype selective ligands. J Pharmacol Exp Ther 278:989–999

    PubMed  CAS  Google Scholar 

  • Sieradzan KA, Fox SH, Hill M, Dick JP, Crossman AR, Brotchie JM (2001) Cannabinoids reduce levodopa-induced dyskinesia in Parkinson’s disease: a pilot study. Neurology 57:2108–2111

    PubMed  CAS  Google Scholar 

  • Singh R, Hurst DP, Barnett-Norris J, Lynch DL, Reggio PH, Guarnieri F (2002) Activation of the cannabinoid CB1 receptor may involve aW6 48/F3 36 rotamer toggle switch. J Pept Res 60:357–370

    Article  PubMed  CAS  Google Scholar 

  • Soderstrom K, Leid M, Moore FL, Murray TF (2000a) Behavioral, pharmacological, and molecular characterization of an amphibian cannabinoid receptor. J Neurochem 75:413–423

    Article  PubMed  CAS  Google Scholar 

  • Soderstrom K, Leid M, Moore FL, Murray TF (2000b) Behavioral, pharmacological, and molecular characterization of an amphibian cannabinoid receptor. J Neurochem 75:413–423

    Article  PubMed  CAS  Google Scholar 

  • Song Z, Slowey C-A, Hurst D, Reggio P (1999) The difference between the CB1 and CB2 cannabinoid receptors at position 5.46 is crucial for the selectivity of WIN55212-2 for CB2. Mol Pharmacol 56:834–840

    PubMed  CAS  Google Scholar 

  • Song Z-H, Bonner TI (1996) A lysine residue of the cannabinoid receptor is critical for receptor recognition by several agonists but not WIN55212-2. Mol Pharmacol 49:891–896

    PubMed  CAS  Google Scholar 

  • Song ZH, Feng W (2002) Absence of a conserved proline and presence of a conserved tyrosine in the CB2 cannabinoid receptor are crucial for its function. FEBS Lett 531:290–294

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Bonner T, Zimmer A, Kita S, Zimmer A (1998) CB1 cannabinoid receptor knockout mice display increased neuropeptide expression in striatal output pathways and are hypoactive in an exploratory test. Soc Neurosci 24:411

    Google Scholar 

  • Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388:773–778

    PubMed  CAS  Google Scholar 

  • Sugiura T, Kodaka T, Kondo S, Nakane S, Kondo H, Waku K, Ishima Y, Watanabe K, Yamamoto I (1997) Is the Cannabinoid CB1 receptor a 2-arachidonylglycerol receptor? Structural requirements for Triggering a Ca2+ transient in NG108-15 cells. J Biochem (Tokyo) 122:890–895

    PubMed  CAS  Google Scholar 

  • Surprenant A, Horstman DA, Akbarali H, Limbird LE (1992) A point mutation of the alpha 2-adrenoceptor that blocks coupling to potassium but not calcium currents. Science 257:977–980

    PubMed  CAS  Google Scholar 

  • Tanda G, Pontieri F, Chiara GD (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276:2048–2050

    Article  PubMed  CAS  Google Scholar 

  • Tao Q, Abood ME (1998) Mutation of a highly conserved aspartate residue in the second transmembrane domain of the cannabinoid receptors, CB1 and CB2, disrupts G-protein coupling. J Pharmacol Exp Ther 285:651–658

    PubMed  CAS  Google Scholar 

  • Tao Q, McAllister S, Andreassi J, Nowell K, Cabral G, Hurst D, Bachtel K, Ekman M, Reggio P, Abood M (1999) Role of a conserved lysine residue in the peripheral cannabinoid receptor (CB2): evidence for subtype specificity. Mol Pharmacol 55:605–613

    PubMed  CAS  Google Scholar 

  • Thomas W, Qian H, Chang C, Karnik S (2000) Agonist-induced phosphorylation of the angiotensin II (AT(1A)) receptor requires generation of a conformation that is distinct from the inositol phosphate-signaling state. J Biol Chem 275:2893–2900

    PubMed  CAS  Google Scholar 

  • Valk PJM, Hol S, Vankan Y, Ihle JN, Askew D, Jenkins NA, Gilbert DJ, Copeland NG, deBoth NJ, Lowenberg B, Delwel R (1997) The genes encoding the peripheral cannabinoid receptor and α-L-fucosidase are located near a newly identified common virus integration site. J Virol 71:6796–6804

    PubMed  CAS  Google Scholar 

  • Vasquez C, Lewis D (1999) The CB1 cannabinoid receptor can sequester G-proteins, making them unavailable to couple to other receptors. J Neurosci 19:9271–9280

    PubMed  CAS  Google Scholar 

  • Venance L, Piomelli D, Glowinski J, Giaume C (1995) Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes. Nature 376:590–594

    Article  PubMed  CAS  Google Scholar 

  • Wagner J, Varga K, Jarai Z, Kunos G (1999) Mesenteric vasodilation mediated by endothelial anandamide receptors. Hypertension 33:429–434

    PubMed  CAS  Google Scholar 

  • Walker J, Huang S, Strangman N, Tsou K, Sanudo-Pena M (1999) Pain modulation by release of the endogenous cannabinoid anandamide. Proc Natl Acad Sci USA 96:12198–12203

    PubMed  CAS  Google Scholar 

  • Walter L, Franklin A, Witting A, Wade C, Xie Y, Kunos G, Mackie K, Stella N (2003) Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci 23:1398–1405

    PubMed  CAS  Google Scholar 

  • Xie XQ, Melvin LS, Makryiannis A (1996) The conformational properties of the highly selective cannabinoid receptor ligand CP-55,940. J Biol Chem 271:10640–10647

    PubMed  CAS  Google Scholar 

  • Yamaguchi F, Macrae AD, Brenner S (1996) Molecular cloning of two cannabinoid type-1 receptor genes from the puffer fish Fugu rubripes. Genomics 35:603–605

    Article  PubMed  CAS  Google Scholar 

  • Zastrow MV, Kobilka BK (1992) Ligand-regulated internalization and recycling of human β2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J Biol Chem 267:3530–3538

    Google Scholar 

  • Zhuang S, Kittler J, Grigorenko E, Kirby M, Sim L, Hampson R, Childers S, Deadwyler S (1998) Effects of long-term exposure to delta9-THC on expression of cannabinoid receptor (CB1) mRNA in different rat brain regions. Brain Res Mol Brain Res 62:141–149

    PubMed  CAS  Google Scholar 

  • Zimmer A, Zimmer A, Hohmann A, Herkenham M, Bonner T (1999) Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci USA 96:5780–5785

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt P, Petersson J, Andersson D, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt E (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    PubMed  CAS  Google Scholar 

  • Zygmunt PM, Andersson DA, Hogestatt ED (2002) Delta 9-tetrahydrocannabinol and cannabinol activate capsaicin-sensitive sensory nerves via a CB1 and CB2 cannabinoid receptor-independent mechanism. J Neurosci 22:4720–4727

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Abood, M.E. (2005). Molecular Biology of Cannabinoid Receptors. In: Pertwee, R.G. (eds) Cannabinoids. Handbook of Experimental Pharmacology, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26573-2_3

Download citation

Publish with us

Policies and ethics