Advertisement

Cannabinoids pp 509-554 | Cite as

Cannabinoid Mechanisms of Pain Suppression

  • J. M. Walker
  • A G. Hohmann
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 168)

Abstract

A large body of literature indicates that cannabinoids suppress behavioral responses to acute and persistent noxious stimulation in animals. This review exax mines neuroanatomical, behavioral, and neurophysiological evidence supporting a role for cannabinoids in suppressing pain at spinal, supraspinal, and peripheral levels. Localization studies employing receptor binding and quantitative autoradiography, immunocytochemistry, and in situ hybridization are reviewed to examine the distribution of cannabinoid receptors at these levels and provide a neuroanatomical framework with which to understand the roles of endogenous cannabinoids in sensory processing. Pharmacological and transgenic approaches that have been used to study cannabinoid antinociceptive mechanisms are described. These studies provide insight into the functional roles of cannabinoid CB1 (CB1R) and CB2 (CB2R) receptor subtypes in cannabinoid antinociceptive mechanisms, as revealed in animal models of acute and persistent pain. The role of endocannabinoids and related fatty acid amides that are implicated in endogenous mechanisms for pain suppression are discussed. Human studies evaluating therapeutic potential of cannabinoid pharmacotherapies in experimental and clinical pain syndromes are evaluated. The potential of exploiting cannabinoid antinociceptive mechanisms in novel pharmacotherapies for pain is discussed.

Keywords

endocannabinoid Spinal cord Periaqueductal gray Supraspinal Peripheral CB1 CB2 THC Hyperalgesia Clinical pain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams DI, Hilton JF, Leiser RJ, Shade SB, Elbeik TA, Aweeka FT, Benowitz NL, Bredt BM, Kosel B, Aberg JA, Deeks SG, Mitchell TF, Mulligan K, Bacchetti P, McCune JM, Schambeln M (2003) Short-term effects of cannabinoids in patients with HIV-1 infection: a randomized, placebo-controlled clinical trial. Ann Intern Med 139:258–266PubMedGoogle Scholar
  2. Adams IB, Compton DR, Martin BR (1998) Assessment of anandamide interaction with the cannabinoid brain receptor: SR 141716A antagonism studies in mice and autoradiographic analysis of receptor binding in rat brain. J Pharmacol Exp Ther 284:1209–1217PubMedGoogle Scholar
  3. Ahluwalia J, Urban L, Capogna M, Bevan S, Nagy I (2000) Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience 100:685–688PubMedCrossRefGoogle Scholar
  4. Ahluwalia J, Urban L, Bevan S, Capogna M, Nagy I (2002) Cannabinoid 1 receptors are expressed by nerve growth factor-and glial cell-derived neurotrophic factor-responsive primary sensory neurones. Neuroscience 110:747–753PubMedCrossRefGoogle Scholar
  5. Akil H, Mayer DJ, Liebeskind JC (1976) Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist. Science 191:961–962PubMedGoogle Scholar
  6. Arner S, Meyerson BA (1988) Lack of analgesic effect of opioids on neuropathic and idiopathic forms of pain [see comments]. Pain 33:11–23PubMedCrossRefGoogle Scholar
  7. Averill S, McMahon SB, Clary DO, Reichardt LF, Priestley JV (1995) Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur J Neurosci 7:1484–1494PubMedGoogle Scholar
  8. Baumann TK, Simone DA, Shain CN, LaMotte RH (1991) Neurogenic hyperalgesia: the search for the primary cutaneous afferent fibers that contribute to capsaicin-induced pain and hyperalgesia. J Neurophysiol 66:212–227PubMedGoogle Scholar
  9. Beaulieu P, Bisogno T, Punwar S, Farquhar-Smith WP, Ambrosino G, Di Marzo V, Rice AS (2000) Role of the endogenous cannabinoid system in the formalin test of persistent pain in the rat. Eur J Pharmacol 396:85–92CrossRefGoogle Scholar
  10. Beecher HK (1959) The measurement of subjective responses: quantitative effects of drugs. Oxford University Press, New York, pp 164–166Google Scholar
  11. Bellgowan PS, Helmstetter FJ (1996)Neural systems for the expression of hypoalgesia durin nonassociative fear. Behav Neurosci 110727–736PubMedCrossRefGoogle Scholar
  12. Beltramo M, Stella N, Calignano A, Lin SY, Makriyannis A, Piomell D (1997) Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science 277:1094–1097PubMedCrossRefGoogle Scholar
  13. Ben-Shabat S, Fride E, Sheskin T, Tamiri T, Rhee MH, Vogel Z, Bisogno T, De Petrocellis L, Di Marzo V, Mechoulam R (1998) An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol 353:23–31PubMedCrossRefGoogle Scholar
  14. Bereiter DA, Bereiter DF, Hirata H (2002) Topical cannabinoid agonist, WIN55,212-2, reduces cornea-evoked trigeminal brainstem activity in the rat. Pain 99:547–556PubMedCrossRefGoogle Scholar
  15. Berkley KJ, Hubscher CH (1995) Are there separate central nervous system pathways for touch and pain? Nat Med 1:766–773PubMedCrossRefGoogle Scholar
  16. Besse D, Lombard MC, Zajac JM, Roques BP, Besson JM (1990) Pre-and postsynaptic distribution of ;, δ and κ opioid receptors in the superficial layers of the cervical dorsal horn of the rat spinal cord. Brain Res 521:15–22PubMedCrossRefGoogle Scholar
  17. Bicher HI, Mechoulam R (1968) Pharmacological effects of two active constituents of marihuana. Arch Int Pharmacodyn Ther 172:24–31PubMedGoogle Scholar
  18. Bisogno T, Melck D, Bobrov M, Gretskaya NM, Bezuglo VV, De Petrocellis L, D Marzo V (2000)N-Acyl-dopamines novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochem J 351:817–824PubMedCrossRefGoogle Scholar
  19. Bloom AS, Dewey WL, Harris LS, Brosius KK (1977) 9-nor-9beta-hydroxyhexahydrocannabinol, a cannabinoid with potent antinociceptive activity: comparisons with morphine. J Pharmacol Exp Ther 200:263–270PubMedGoogle Scholar
  20. Breyer RM, Bagdassarian CK, Myers SA, Breyer MD (2001) Prostanoid receptors: subtypes and signaling Annu Rev Pharmacol Toxicol 41:661–690PubMedCrossRefGoogle Scholar
  21. Bridges D, Ahmad K, Rice AS (2001) The synthetic cannabinoid WIN55,212-2 attenuates hyperalgesia and allodynia in a rat model of neuropathic pain. Br J Pharmacol 133:586–594PubMedCrossRefGoogle Scholar
  22. Bridges D, Rice AS, Egertová M, Elphick MR, Winter J, Michael GJ (2003) Localisation of cannabinoid receptor 1 in rat dorsal root ganglion using in situ hybridisation and immunohistochemistry. Neuroscience 119:803–812PubMedCrossRefGoogle Scholar
  23. Burstein SH, Friderichs E, Kogel B, Schneider J, Selve N (1998) Analgesic effects of 1′,1′ dimethylheptyl-delta8-THC-11-oic acid (CT3) in mice. Life Sci 63:161–168PubMedCrossRefGoogle Scholar
  24. Burstein SH, Karst M, Schneider U, Zurier RB (2004) Ajulemic acid: a novel cannabinoid produces analgesia without a “high”. Life Sci 75:1513–1522PubMedCrossRefGoogle Scholar
  25. Buxbaum DM (1972) Analgesic activity of Δ 9-tetrahydrocannabinol in the rat and mouse. Psychopharmacologia 25:275–280PubMedCrossRefGoogle Scholar
  26. Calignano A, La Rana G, Giuffrida A, Piomelli D (1998) Control of pain initiation by endogenous cannabinoids. Nature 394:277–281PubMedGoogle Scholar
  27. Calza L, Pozza M, Zanni M, Manzini CU, Manzini E, Hokfelt T (1998) Peptide plasticity in primary sensory neurons and spinal cord during adjuvant-induced arthritis in the rat: an immunocytochemical and in situ hybridization study. Neuroscience 82:575–589PubMedGoogle Scholar
  28. Chapman V (1999) The cannabinoid CB1 receptor antagonist, SR141716A, selectively facilitates nociceptive responses of dorsal horn neurones in the rat. Br J Pharmacol 127:1765–1767PubMedCrossRefGoogle Scholar
  29. Clark WC Janal MN Zeidenberg P Nahas G (1981) Effects of moderate and high doses of marihuana on thermal pain: a sensory decision theory analysis. J Clin Pharmacol 21:299S–310SPubMedGoogle Scholar
  30. Clayton N, Marshall FH, Bountra C, O’shaughnessy CT (2002) CB1 and CB2 cannabinoid receptors are implicated in inflammatory pain. Pain 96:253–260PubMedCrossRefGoogle Scholar
  31. Coderre TJ, Melzack R (1992) The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury. J Neurosci 12:3665–3670PubMedGoogle Scholar
  32. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87PubMedCrossRefGoogle Scholar
  33. Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, Lichtman AH (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A 98:9371–9376PubMedCrossRefGoogle Scholar
  34. Cravatt BF, Saghatelian A, Hawkins EG, Clement AB, Bracey MH, Lichtman AH (2004) Functional disassociation of the central and peripheral fatty acid amide signaling systems. Proc Natl Acad Sci U S A 101:10821–10826PubMedCrossRefGoogle Scholar
  35. Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6:13–34PubMedCrossRefGoogle Scholar
  36. De Petrocellis L, Bisogno T, Davis JB, Pertwee RG, Di Marzo V (2000) Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: inhibitors of anandamide uptake with negligible capsaicin-like activity. FEBS Lett 483:52–56PubMedGoogle Scholar
  37. DeLeo JA, Tanga FY, Tawfik VL (2004) Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist 10:40–52PubMedCrossRefGoogle Scholar
  38. Deutsch DG, Chin SA (1993) Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol 46:791–796PubMedCrossRefGoogle Scholar
  39. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949PubMedGoogle Scholar
  40. Di Marzo V, Bisogno T, Sugiura T, Melck D, De Petrocellis L (1998) The novel endogenous cannabinoid 2-arachidonoylglycerol is inactivated by neuronal-and basophil-like cells: connections with anandamide. Biochem J 331:15–19PubMedGoogle Scholar
  41. Dixon WE (1899) The pharmacology of cannabis. Indica Br Med J 2:1354–1357Google Scholar
  42. Dogrul A, Gul H, Akar A, Yildiz O, Bilgin F, Guzeldemir E (2003) Topical cannabinoid antinociception: synergy with spinal sites. Pain 105:11–16PubMedGoogle Scholar
  43. Donaldson LF, McQueen DS, Seckl JR (1994) Local anaesthesia prevents acute inflammatory changes in neuropeptide messenger RNA expression in rat dorsal root ganglia neurons. Neurosci Lett 175:111–113PubMedCrossRefGoogle Scholar
  44. Dray A (1995) Inflammatory mediators of pain. Br J Anaesth 75:125–131PubMedGoogle Scholar
  45. Drew LJ, Harris J, Millns PJ, Kendall DA, Chapman V (2000) Activation of spinal cannabinoid 1 receptors inhibits C-fibre driven hyperexcitable neuronal responses and increases [35S]GTPgammaS binding in the dorsal horn of the spinal cord of noninflamed and inflamed rats. Eur J Neurosci 12:2079–2086PubMedCrossRefGoogle Scholar
  46. Egertová M, Giang DK, Cravatt BF, Elphick MR (1998) A new perspective on cannabinoid signalling: complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain. Proc R Soc Lond B Biol Sci 265:2081–2085CrossRefGoogle Scholar
  47. Egertová M, Cravatt BF, Elphick MR (2003) Comparative analysis of fatty acid amide hydrolase and CB(1) cannabinoid receptor expression in the mouse brain: evidence of a widespread role for fatty acid amide of endocannabinoid signaling. Neuroscience 119:481–496PubMedGoogle Scholar
  48. Ellington HC, Cotter MA, Cameron NE, Ross RA (2002) The effect of cannabinoids on capsaicin-evoked calcitonin gene-related peptide (CGRP) release from the isolated paw skin of diabetic and non-diabetic rats. Neuropharmacology 42966–975PubMedCrossRefGoogle Scholar
  49. Farquhar-Smith WP, Egertova M, Bradbury EJ, McMahon SB, Rice AS, Elphick MR (2000) Cannabinoid CB(1) receptor expression in rat spinal cord. Mol Cell Neurosci 15:510–521PubMedCrossRefGoogle Scholar
  50. Farquhar-Smith WP, Jaggar SI, Rice AS (2002) Attenuation of nerve growth factor-induced visceral hyperalgesia via cannabinoid CB(1) and CB(2)-like receptors. Pain 97:11–21PubMedCrossRefGoogle Scholar
  51. Felder CC, Briley EM, Axelrod J, Simpson JT, Mackie K, Devane WA (1993) Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction. Proc Natl Acad Sci U S A 90:7656–7660PubMedGoogle Scholar
  52. Fezza F, Bisogno T, Minassi A, Appendino G, Mechoulam R, Di Marzo V (2002) Noladin ether, a putative novel endocannabinoid: inactivation mechanisms and a sensitive method for its quantification in rat tissues. FEBS Lett 513:294–298PubMedCrossRefGoogle Scholar
  53. Fields HL, Heinricher MM, Mason P (1991) Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14:219–245PubMedCrossRefGoogle Scholar
  54. Fox A, Kesingland A, Gentry C, McNair K, Patel S, Urban L, James I (2001) The role of central and peripheral cannabinoid1 receptors in the antihyperalgesic activity of cannabinoids in a model of neuropathic pain. Pain 92:91–100PubMedCrossRefGoogle Scholar
  55. Fride E (1995) Anandamides: tolerance and cross-tolerance to delta 9-tetrahydrocannabinol. Brain Res 697:83–90PubMedCrossRefGoogle Scholar
  56. Fride E, Mechoulam R (1993) Pharmacological activity of the cannabinoid receptor agonist, anandamide, a brain constituent. Eur J Pharmacol 231:313–314PubMedCrossRefGoogle Scholar
  57. Galeazza MT, Garry MG, Yost HJ, Strait KA, Hargreaves KM, Seybold VS (1995) Plasticity in the synthesis and storage of substance P and calcitonin gene-related peptide in primary afferent neurons during peripheral inflammation. Neuroscience 66:443–458PubMedCrossRefGoogle Scholar
  58. Gilbert PE (1981) A comparison of THC, nantradol, nabilone, and morphine in the chronic spinal dog. J Clin Pharmacol 21:311S–319SPubMedGoogle Scholar
  59. Gong LW, Ding YQ, Wang D, Zheng HX, Qin BZ, Li JS, Kaneko T, Mizuno N (1997) GABAergic synapses on mu-opioid receptor-expressing neurons in the superficial dorsal horn: an electron microscope study in the cat spinal cord. Neurosci Lett 227:33–36PubMedGoogle Scholar
  60. Grant G (1995) Primary afferent projections to the spinal cord. In: Paxinos G (ed) The Rat Nervous System, 2nd edn. Academic Press, San Diego, 61–65Google Scholar
  61. Griffin G, Fernando SR, Ross RA, McKay NG, Ashford ML, Shire D, Huffman JW, Yu S, Lainton JA, Pertwee RG (1997) Evidence for the presence of CB2-like cannabinoid receptors on peripheral nerve terminals. Eur J Pharmacol 339:53–61PubMedCrossRefGoogle Scholar
  62. Guhring H, Hamza M, Sergejeva M, Ates M, kotalla CE, Ledent C, Brune K (2002) A role for endocannabinoids in indomethacin-induced spinal antinociception. Eur J Pharmacol 454:153–163PubMedGoogle Scholar
  63. Gutierrez T, Nackley AG, Neely MH, Freeman KG, Edwards GL, Hohmann AG (2003) Effects of neurotoxic destruction of descending noradrenergic pathways on cannabinoid antinocicepetion in models of acute and tonic nociception. Brain Res 987:176–185PubMedCrossRefGoogle Scholar
  64. Hanani M, Huang TY, Cherkas PS, Ledda M, Pannese E (2002) Glial cell plasticity in sensory ganglia induced by nerve damage. Neuroscience 114:279–283PubMedCrossRefGoogle Scholar
  65. Hanesch U, Blecher F, Stiller RU, Emson PC, Schaible HG, Heppelmann B (1995) The effect of a unilateral inflammation at the rats ankle joint on the expression of preprotachykinin-A mRNA and preprosomatostatin mRNA in dorsal root ganglion cells—a study using non-radioactive in situ hybridization. Brain Res 700:279–284PubMedCrossRefGoogle Scholar
  66. Hanus L, Gopher A, Almog S, Mechoulam R (1993) Two new unsaturated fatty acid ethanolamides in brain that bind to the cannabinoid receptor. J Med Chem 36:3032–3034PubMedCrossRefGoogle Scholar
  67. Hanus L, Breuer A, Tchilibon S, Shiloah S, Goldenberg D, Horowitz M, Pertwee RG, Ross RA, Mechoulam R, Fride E (1999) HU-308: a specific agonist for CB(2), a peripheral cannabinoid receptor. Proc Natl Acad Sci U S A 96:14228–14233PubMedCrossRefGoogle Scholar
  68. Hanus L, Abu-Lafi S, Fride E, Breuer A, Vogel Z, Shalev DE, Kustanovich I, Mechoulam R (2001) 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci U S A 98:3662–3665PubMedCrossRefGoogle Scholar
  69. Harris J, Drew LJ, Chapman V (2000) Spinal anandamide inhibits nociceptive transmission via cannabinoid receptor activation in vivo. Neuroreport 11:2817–2819PubMedGoogle Scholar
  70. Helmstetter FJ (1992) The amygdala is essential for the expression of conditional hypoalgesia. Behav Neurosci 106:518–528PubMedCrossRefGoogle Scholar
  71. Helmstetter FJ, Bellgowan PS (1993) Lesions of the amygdala block conditional hypoalgesia on the tail flick test. Brain Res 612:253–257PubMedCrossRefGoogle Scholar
  72. Helmstetter FJ, Bellgowan PS, Tershner SA (1993) Modulation of spinal nociceptive reflexes by the microinjection of morphine into the amygdala. NeuroReport 4:471–474PubMedGoogle Scholar
  73. Helmstetter FJ, Bellgowan PS, Poore LH (1995) Microinfusion of mu, but not delta or kappa opioid agonists into the basolateral amygdala results in inhibition of the tail flick reflex in pentobarbital-anesthetized rats. J Pharmacol Exp Ther 275:381–388PubMedGoogle Scholar
  74. Helyes Z, Nemeth J Than M, Bolcskei K, Pinter E, Szolcsanyi J (2003) Inhibitory effect of anandamide on resiniferatoxin-induced sensory neuropeptide release in vivo and neuropathic hyperalgesia in the rat. Life Sci 73:2345–2353PubMedCrossRefGoogle Scholar
  75. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583PubMedGoogle Scholar
  76. Herzberg U, Eliav E, Bennett GJ, Kopin IJ (1997) The analgesic effects of R(+)-WIN 55,212-2 mesylate, a high affinity cannabinoid agonist, in a rat model of neuropathic pain. Neurosci Lett 221:157–160PubMedCrossRefGoogle Scholar
  77. Hill SY, Schwin R, Goodwin DW, Powell BJ (1974) Marihuana and pain. J Pharmacol Exp Ther 188:415–418PubMedGoogle Scholar
  78. Hohmann AG (2002) Spinal and peripheral mechanisms of cannabinoid antinociception: behavioral, neurophysiological and neuroanatomical perspectives. Chem Phys Lipids 121173–190PubMedCrossRefGoogle Scholar
  79. Hohmann AG, Herkenham M (1998) Regulation of cannabinoid and mu opioid receptor binding sites following neonatal capsaicin treatment. Neurosci Lett 252:13–16PubMedCrossRefGoogle Scholar
  80. Hohmann AG, Herkenham M (1999a) Cannabinoid receptors undergo axonal flow in sensory nerves. Neuroscience 92:1171–1175PubMedCrossRefGoogle Scholar
  81. Hohmann AG, Herkenham M (1999b) Localization of central cannabinoid CB1 receptor messenger RNA in neuronal subpopulations of rat dorsal root ganglia: a double-label in situ hybridization study. Neuroscience 90:923–931PubMedCrossRefGoogle Scholar
  82. Hohmann AG, Martin WJ, Tsou K, Walker JM (1995) Inhibition of noxious stimulus-evoked activity of spinal cord dorsal horn neurons by the cannabinoid WIN 55,212-2. Life Sci 56:2111–2118PubMedCrossRefGoogle Scholar
  83. Hohmann AG, Tsou K, Walker JM (1998) Cannabinoid modulation of wide dynamic range neurons in the lumbar dorsal horn of the rat by spinally administered WIN55,212-2 Neurosci Lett 257:119–122PubMedCrossRefGoogle Scholar
  84. Hohmann A Briley EM, Herkenham M (1999a) Pre-and postsynaptic distribution of cannabinoid and mu opioid receptors in rat spinal cord. Brain Res 822:17–25PubMedCrossRefGoogle Scholar
  85. Hohmann AG, Tsou K, Walker JM (1999b) Cannabinoid suppression of noxious heat-evoked activity in wide dynamic range neurons in the lumbar dorsal horn of the rat. J Neurophysiol 81:575–583PubMedGoogle Scholar
  86. Hohmann AG, Tsou K, Walker JM (1999c) Intrathecal cannabinoid administration suppresses noxious-stimulus evoked Fos protein-like immunoreactivity in rat spinal cord: comparison with morphine Acta Pharmacol Sin 20:1132–1136Google Scholar
  87. Hohmann AG, Neely MH, Suplita RL, Nackley AG, Holmes PV, Crystal JD (2001) Endocannabinoid mechanisms of stress-induced analgesia. Soc Neurosci Abstr 27:716–719Google Scholar
  88. Hohmann AG, Farthing JN, Zvonok AM, Makriyannis A (2004) Selective activation of cannabinoid CB2 receptors suppresses hyperalgesia evoked by intradermal capsaicin J Pharmacol Exp Ther 308:446–453PubMedGoogle Scholar
  89. Huang SM, Bisogno T, Trevisan M, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros TJ, Krey JF, Chu CJ, Miller JD, Davies SN, Geppetti P, Walker JM, Di Marzo V (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors Proc Natl Acad Sci U S A 99:8400–8405PubMedGoogle Scholar
  90. Hunt SP, Pini A, Evan G (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation Nature 328:632–634PubMedCrossRefGoogle Scholar
  91. Ibrahim MM, Deng H, Zvonok A, Cockayne DA, Kwan J, Mata HP, Vanderah TW, Lai J, Porreca F, Makriyannis A, Malan TP (2003)Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS Proc Natl Acad Sci USA 100:10529–10533PubMedCrossRefGoogle Scholar
  92. Jennings EA, Vaughan CW, Christie MJ (2001) Cannabinoid actions on rat superficial medullary dorsal horn neurons in vitro J Physiol 534:805–812PubMedCrossRefGoogle Scholar
  93. Ji RR, Zhang X, Wiesenfeld-Hallin Z, Hokfel T (1994) Expression of neuropeptide Y and neuropeptide Y (Y1) receptormRNA in rat spinal cord and dorsal root ganglia following peripheral tissue inflammation. J Neurosci 14:6423–6434PubMedGoogle Scholar
  94. Ji RR, Zhang X, Zhang Q, Dagerlind A, Nilsson S, Wiesenfeld-Hallin Z, Hokfelt T (1995) Central and peripheral expression of galanin in response to inflammation Neuroscience 6:563–576Google Scholar
  95. Johanek LM, Simone DA (2004) Activation of peripheral cannabinoid receptors attenuates cutaneous hyperalgesia produced by a heat injury Pain 109:432–442PubMedCrossRefGoogle Scholar
  96. Johanek LM, Heitmiller DR, Turner M, Nader N, Hodges J, Simone DA (2001) Cannabinoids attenuate capsaicin-evoked hyperalgesia through spinal and peripheral mechanisms. Pain 93:303–315PubMedCrossRefGoogle Scholar
  97. Karst M Salim K, Burstein S, Conrad I, Hoy L, Schneider U (2003) Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain: a randomized controlled trial. JAMA 290:1757–1762PubMedCrossRefGoogle Scholar
  98. Kelly S, Chapman V (2001) Selective cannabinoid CB1 receptor activation inhibits spinal nociceptive transmission in vivo. J Neurophysiol 86:3061–3064PubMedGoogle Scholar
  99. Kemp T, Spike RC, Watt C, Todd AJ (1996) The mu-opioid receptor (MOR1) is mainly restricted to neurons that do not contain GABA or glycine in the superficial dorsal horn of the rat spinal cord. Neuroscience751231–1238PubMedCrossRefGoogle Scholar
  100. Kenins P (1982)Responses of single nerve fibres to capsaicin applied to the skin. Neurosci Lett 29:83–88PubMedCrossRefGoogle Scholar
  101. Khasabova IA, Simone DA, Seybold VS (2002) Cannabinoids attenuate depolarizationdependent Ca2+ influx in intermediate-size primary afferent neurons of adult rats. Neuroscience 115:613–625PubMedCrossRefGoogle Scholar
  102. Klegeris A, Bissonnette CJ, McGeer PL (2003)Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br J Pharmacol 139:775–786PubMedCrossRefGoogle Scholar
  103. Ko MC, Woods JH (1999) Local administration of delta9-tetrahydrocannabinol attenuates capsaicin-induced thermal nociception in rhesus monkeys: a peripheral cannabinoid] action. Psychopharmacology (Berl) 143:322–326PubMedCrossRefGoogle Scholar
  104. Koga D, Santa T, Fukushima T, Homma H, Imai K (1997) Liquid chromatographic-atmospheric pressure chemical ionizationmass spectrometric determination of anandamide and its analogs in rat brain and peripheral tissues. J Chromatogr B Biomed Sci Appl 690:7–13PubMedCrossRefGoogle Scholar
  105. Kosersky DS, Dewey WL, Harris LS (1973) Antipyretic, analgesic and anti-inflammatory effects of delta 9-tetra hydrocannabinol in the rat. Eur J Pharmacol 24:1–7PubMedCrossRefGoogle Scholar
  106. Kozak KR, Rowlinson SW, Marnett LJ (2000) Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. J Biol Chem275: 33744–33749PubMedCrossRefGoogle Scholar
  107. Kozak KR, Crews BC, Morrow JD, Wang LH, Ma YH, Weinander R, Jakobsson PJ, Marnett LJ (2002) Metabolism of the endocannabinoids, 2-arachidonylglycerol and anandamide, into prostaglandin,thromboxane, and prostacyclin glycerol esters and ethanolamides Biol Chem 277:44877–44885Google Scholar
  108. Kruger L, Light AR, Schweizer FE (2003)Axonal terminals of sensory neurons and their morphological diversity. J Neurocytol 3:205–216Google Scholar
  109. LaMotte R, Shain CN, Simone DA, Tsai EF (1991)Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms. J Neurophysiol 66:190–211PubMedGoogle Scholar
  110. LaMotte RH, Lundberg LE, Torebjörk HE (1992) Pain, hyperalgesia and activity in nociceptive C units in humans after intradermal injection of capsaicinJ Physiol 448:749–764PubMedGoogle Scholar
  111. Landsman RS, Burkey TH, Consroe P, Roeske WR, Yamamura HI (1997) SR141716A is an inverse agonist at the human cannabinoid CB1 receptor Eur J Pharmaco 334R1–R2Google Scholar
  112. Ledent C, Valverd O, Cossu G, Petitet F, Aubert JF, Beslot F, Bohme GA, Imperato A, Pedrazzini T, Roques BP, Vassart G, Fratta W, Parmentier M (1999) Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice Science 283:401–404PubMedCrossRefGoogle Scholar
  113. Leslie TA, Emson PC, Dowd PM, Woolf CJ (1995) Nerve growth factor contributes to the upregulation of growth-associated protein 43 and preprotachykinin A messenger RNAs in primary sensory neurons following peripheral inflammation Neuroscience 67:753–761PubMedCrossRefGoogle Scholar
  114. Li J, Daughters RS, Bullis C, Bengiamin R, Stucky7 MW, Brennan J, Simone DA (1999) The cannabinoid receptor agonist WIN55,212-2 atmesylate blocks the development of hyperalgesia produced by capsaicin in rats. Pain8:25–33Google Scholar
  115. Li L, Zhou XF (2001) PericellularGriffonia simplicifolia I isolectin B4-binding ring structures in the dorsal root ganglia following peripheral nerve injury in rats J Comp Neurol 439:259–274PubMedGoogle Scholar
  116. Lichtman AH, Martin BR (1991a) Cannabinoid-induced antinociception is mediated by a spinal a2-noradrenergic mechanism Brain Res 559:309–314PubMedCrossRefGoogle Scholar
  117. Lichtman AH, Martin BR (1991b) Spinal and supraspinal components of cannabinoidinduced antinociception. J Pharmacol Exp Ther 258:517–523PubMedGoogle Scholar
  118. Lichtman AH, Shelton CC, Advani T, Cravatt BF (2004) Mice lacking fatty acid amide hydrolase exhibit a cannabinoid receptor-mediated phenotypic hypoalgesia. Pain 109:319–327PubMedCrossRefGoogle Scholar
  119. Lim G, Sung B, JiRR, Mao J (2003) Upregulation of spinal cannabinoid-1-receptors following nerve injury enhances the effects of Win55,212-2 tion neuropathic pain behaviors in rats Pain 105:275–283PubMedCrossRefGoogle Scholar
  120. Luo C, Kumamoto E, Furue H, Chen J, Yoshimura M (2002) Anandamide inhibits excitatory transmission to rat substantia gelatinosa neurones in a manner different from that of capsaicin Neurosci Lett 321:17–20PubMedCrossRefGoogle Scholar
  121. Mailleux P, Vanderhaeghen JJ (1992) Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry Neuroscience 48:655–668PubMedCrossRefGoogle Scholar
  122. Malan TP, Ibrahim MM, Makriyannis A, Porreca F (2004) CB2 cannabinoid receptors may produce peripheral analgesia by stimulating local release of endogenous opioids. 2004 Symposium on the Cannabinoids. International Cannabinoid Research Society,p 52Google Scholar
  123. Malan TPJr, Ibrahim MM, Deng H, Liu Q, Mata HP, Vanderah T, Porreca F, Makriyannis A (2001) CB2cannabinoid receptor-mediated peripheral antinociception Pain 9:239–245Google Scholar
  124. Malmberg AB, Chen C, Tonegawa S, Basbaum AI (1997) Preserved acute pain and reduced neuropathic pain in mice lacking PKCgamma Science 278279–283PubMedCrossRefGoogle Scholar
  125. Manning BH, Mayer DJ (1995) The central nucleus of the amygdala contributes to the production of morphine antinociception in the formalin test. Pain 63:141–152PubMedCrossRefGoogle Scholar
  126. Manning BH, Merin NM, Meng ID, Amaral DG (2001)Reductioninopioid-andcannabinoidinduced antinociception in rhesus monkeys after bilateral lesions of the amygdaloid complex J Neurosci 21:8238–8246PubMedGoogle Scholar
  127. Manning BH, Martin WJ, Meng ID (2003) Therodent amygdala contributes totheproduction of cannabinoid-induced antinociception Neuroscience 120:1157–1170PubMedCrossRefGoogle Scholar
  128. Mao J, Price DD, Lu J, Keniston L, Mayer DJ (2000) Two distinctive antinociceptive systems in rats with pathological pain Neurosci Lett 28:13–16Google Scholar
  129. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgansberger W, Di Marzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories Nature 418:530–534PubMedCrossRefGoogle Scholar
  130. Martin BR, Compton DR, Thomas BF, Prescott WR, Little PJ, Razdan RK, Johnson MR, Melvin LS, Mechoulam R, Ward SJ (1991) Behavioral, biochemical, and molecularmodeling evaluations of cannabinoid analogs Pharmacol Biochem Behav 40:47–478CrossRefGoogle Scholar
  131. Martin WJ, Lai NK, Patrick SL, Tsou K, Walker JM (1993) Antinociceptive actions of cannabinoids following intraventricular administration in rats Brain Res 629:300–304PubMedCrossRefGoogle Scholar
  132. Martin WJ, Patrick SL, Cof.n PO, Tsou K, Walker JM (1995) An examination of the central sites of action of cannabinoid-induced antinociception in the rat Life Sci 56:2103–2109PubMedCrossRefGoogle Scholar
  133. Martin WJ, Hohmann AG, Walker JM (1996) Suppression of noxious stimulus-evoked activity in the ventral posterolateral nucleus of the thalamus by a cannabinoid agonist: correlation between electrophysiological and antinociceptive effects JNeurosci 16:6601–6611Google Scholar
  134. Martin WJ, Tsou K, Walker JM (1998) Cannabinoid receptor-mediated inhibition of the rat tail-flick reflex aftermicroinjection into the rostral ventromedialmedulla Neurosci Lett 242:33–36PubMedCrossRefGoogle Scholar
  135. Martin WJ, Cof.n PO, Attias E, Balinsky M, Tsou K, Walker JM (1999a) Anatomical basis for cannabinoid-induced antinociception as revealed by intracerebral microinjections Brain Res 822:237–242PubMedCrossRefGoogle Scholar
  136. Martin WJ, Loo CM, Basbaum AI (1999b) Spinal cannabinoids are anti-allodynic in rats with persistent inflammation Pain 82:199–205PubMedCrossRefGoogle Scholar
  137. Mazzari S, Canella R, Petrell iL, Marcolongo G, Leon A(1996) N-(2-hydroxyethyl) hexadecanamide is orally active in reducing edema formation and inflammatory hyperalgesia by down-modulating mast cell activation Eur J Pharmacol 300:227–236PubMedCrossRefGoogle Scholar
  138. McCall WD, Tanner KD, Levine JD (1996) Formalin induces biphasic activity in C-fibers in the rat. Neurosci Lett 208:45–48PubMedCrossRefGoogle Scholar
  139. McMahon SB (1996) NGF as a mediator of inflammatory pain. Philos Trans R Soc Lond B Biol Sci 351431–440Google Scholar
  140. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90PubMedCrossRefGoogle Scholar
  141. Medina JF, Repa CJ, Mauk MD, LeDoux JE (2002) Parallels between cerebellum-and amygdala-dependent conditioning. Nature Rev Neuroscience 3:122–131PubMedGoogle Scholar
  142. Meng ID, Manning BH, Martin WJ, Fields HL (1998) An analgesia circuit activated by cannabinoids Nature 395:381–384PubMedCrossRefGoogle Scholar
  143. Millan MJ (1999) The induction of pain: an integrative review Prog Neurobiol 57:1–164PubMedCrossRefGoogle Scholar
  144. Molander C, Grant G (1995) Spinal cord cytoarchitecture. In: Paxinos G (ed) The rat nervous system. Academic Press, San Diego, 39–45Google Scholar
  145. Molliver DC, Radeke MJ, Feinstein SC, Snider WD(1995) Presence or absence ofTrkAprotein distinguishes subsets of small sensory neuronswith unique cytochemical characteristics and dorsal horn projections. J Comp Neurol 36:404–416Google Scholar
  146. Monhemius R, Azami J, Green DL, Roberts MH (2001) CB1 receptor mediated analgesia fromthe nucleus reticularis gigantocellularis pars alpha is activated in an animal model of neuropathic pain Brain Res 908:67–74PubMedCrossRefGoogle Scholar
  147. Moreau JL, Fields HL (1986) Evidence for GABA involvement in midbrain control of medullary neurons that modulate nociceptive transmission Brain Res 397:37–46PubMedCrossRefGoogle Scholar
  148. Morisset V, Ahluwalia J, Nagy I, Urban L (2001)Possible mechanisms of cannabinoidinduced antinociception in the spinal cord Eur J Pharmacol 429:93–100PubMedCrossRefGoogle Scholar
  149. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65PubMedCrossRefGoogle Scholar
  150. Nackley AG, Makriyannis A, Hohmann AG (2003) Selective activation of cannabinoid CB2 receptors suppresses spinal Fos protein expression and pain behavior in a rat model of inflammation Neuroscience 119:747–757PubMedCrossRefGoogle Scholar
  151. Nackley AG, Suplita RL 2nd, Hohmann AG (2003)A peripheral cannabinoid mechanism suppresses spinal fos protein expression and pain behavior in a rat model of inflammation Neuroscience 117:659–670PubMedCrossRefGoogle Scholar
  152. Nackley AG, Zvonok A, Makriyannis A, Hohmann AG (2004) Activation of cannabinoid CB2 receptors suppresses C-fiber responses and windup in spinal wide dynamic range neurons in the absence and presence of inflammation. J Neurophysiol 92:3562–3574PubMedGoogle Scholar
  153. Nagy JI, Hunt SP (1982) Fluoride-resistant acid phosphatase-containing neurones in dorsal root ganglia are separate from those containing substance P or somatostatin. Neuroscience 7:89–97PubMedGoogle Scholar
  154. Nag JI, Vincent SR, Staines WA, Fibiger HC, Reisine TD, Yamamura HI (1980) Neurotoxic action of capsaicin on spinal substance P neurons. Brain Res 186:435–444Google Scholar
  155. Neumann S, Doubell TP, Leslie T, Woolf CJ (1996) Inflammatory pain hypersensitivity mediatedby phenotypicswitch inmyelinatedprimary sensory neurons Nature 384:360–364PubMedCrossRefGoogle Scholar
  156. Nirodi CS, Crews BC, Kozak KR, Morrow JD, Marnett LJ (2004) The glyceryl ester of prostaglandin E2 mobilizes calcium and activates signal transduction in RAW264.7 cells. Proc Natl Acad Sci U S A 101:1840–1845PubMedCrossRefGoogle Scholar
  157. Noyes R Jr, Brunk SF, Avery DA, Canter AC (1975a) The analgesic properties of delta-9-tetrahydrocannabinol and codeine. Clin Pharmacol Ther 18:84–89PubMedGoogle Scholar
  158. Noyes R Jr, Brunk SF, Baram DA, Canter A (1975b) Analgesic effect of delta-9-tetrahydrocannabinol. J Clin Pharmacol 15:139–143PubMedGoogle Scholar
  159. Oka S, Tsuchie A, Tokumura A, Muramatsu M, Suhara Y, Takayama H, Waku K, Sugiura T (2003)Ether-linked analogue of 2-arachidonoylglycerol (noladin ether) wasnot detected in the brains of various mammalian species. J Neurochem 85:1374–1381PubMedCrossRefGoogle Scholar
  160. Palazzo E, Marabese I, de Novellis V, Oliva P, Rossi F, Berrino L, Maione S (2001)Metabotropic and NMDA glutamate receptors participate in the cannabinoid-induced antinociception. Neuropharmacology 40:319–326PubMedCrossRefGoogle Scholar
  161. Patel HJ, Birrell MA, Crispino N, Hele DJ, Venkatesan P, Barnes PJ, Yacoub MH, Belvisi MG (2003) Inhibition of guinea-pig and human sensory nerve activity and the cough reflex in guinea-pigs by cannabinoid (CB2) receptor activation. Br J Pharmacol 140:261–268PubMedCrossRefGoogle Scholar
  162. Pertovaara A, Wei H, Hamalainen MM (1996) Lidocaine in the rostroventromedial medulla and the periaqueductal gray attenuates allodynia in neuropathic rats. Neurosci Lett 218:127–130PubMedCrossRefGoogle Scholar
  163. Pertwee R, Griffin G, Hanus L, Mechoulam R (1994) Effects of two endogenous fatty acid ethanolamides on mouse vasa deferentia. Eur J Pharmacol 259:115–120Google Scholar
  164. Piomelli D, Beltramo M, Glasnapp S, Lin SY, Goutopoulos A, Xie XQ, Makriyannis A (1999) Structural determinants for recognition and translocation by the anandamide transporter. Proc Natl Acad Sci U S A 9:5802–5807Google Scholar
  165. Porreca F, Ossipov MH, Gebhart GF (2002) Chronic pain and medullary descending facilitation. Trends Neurosci 25:319–325PubMedCrossRefGoogle Scholar
  166. Porter AC, Sauer JM, Knierman MD, Becker GW, Berna MJ, Bao J, Nomikos GG, Carter P, Bymaster FP, Leese AB, Felder CC (2002) Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther 301:1020–1024PubMedCrossRefGoogle Scholar
  167. Price TJ, Helesic G, Parghi D, Hargreaves KM, Flores CM (2003) The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat. Neuroscience 120:155–162PubMedCrossRefGoogle Scholar
  168. Prusakiewicz JJ, Kingsley PJ, Kozak KR, Marnett LJ (2002) Selective oxygenation of Narachidonylglycine by cyclooxygenase-2. Biochem Biophys Res Commun 29:612–617Google Scholar
  169. Puffenbarger RA, Boothe AC, Cabral GA (2000) Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia 29:58–69PubMedCrossRefGoogle Scholar
  170. Puig S, Sorkin LS (1996) Formalin-evoked activity in identified primary afferent fibers systemic lidocaine suppresses phase-2 activity. Pain 64:345–355PubMedCrossRefGoogle Scholar
  171. Quartilho A, Mata HP, Ibrahim MM, Vanderah TW, Porreca F, Makriyannis A, Malan TP Jr (2003) Inhibition of inflammatory hyperalgesia by activation of peripheral CB2 cannabinoid receptors. Anesthesiology 99:955–960PubMedCrossRefGoogle Scholar
  172. Raft D, Gregg J, Ghia J, Harris L (1977) Effects of intravenous tetrahydrocannabinol on experimental and surgical pain. Psychological correlates of the analgesic response. lin Pharmacol Ther 21:26–33Google Scholar
  173. Reynolds DV (1969) Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164:444–445PubMedGoogle Scholar
  174. Rice AS, Farquhar-Smith WP, Nagy I (2002) Endocannabinoids and pain: spinal and peripheral analgesia in inflammation and neuropathy. Prostaglandins Leukot Essent Fatty Acids 66:243–256PubMedCrossRefGoogle Scholar
  175. Richardson JD, Aanonsen L, Hargreaves KM (1997) SR 141716A, cannabinoid receptor antagonist, produces hyperalgesia in untreated mice. Eur J Pharmacol 319:R3–R4PubMedCrossRefGoogle Scholar
  176. Richardso JD, Aanonsen L, Hargreaves KM (1998a) Antihyperalgesic effects of spinal cannabinoids. Eur J Pharmacol 345:145–153Google Scholar
  177. Richardson JD Aanonsen L Hargreaves KM (1998b) Hypoactivity of the spinal cannabinoid system results in NMDA-dependent hyperalgesia. J Neurosci 18:457Google Scholar
  178. Richardson JD, Kilo S, Hargreaves KM (1998c) Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors. Pain 75:111–119PubMedCrossRefGoogle Scholar
  179. Ross RA, Coutts AA, McFarlane SM, Anavi-Goffer, Irving AJ, Pertwee RG, MacEwan DJ, Scott RH (2001a) Actions of cannabinoid receptor ligands on rat cultured sensory neurones: implications for antinociception. Neuropharmacolo gy 4:221Google Scholar
  180. Ross RA, Gibson M, Brockie HC Leslie M, Pashmi G, Craib S Di Marzo V, Pertwee RG (2001b) Structure-activity relationship for the endogenous cannabinoid, anandamide, and certain of its analogues at vanilloid receptors in transfected cells and vas deferens. Br J Pharmacol 132:631–640PubMedCrossRefGoogle Scholar
  181. Ross RA, Craib SJ, Stevenson LA, Pertwee RG, Henderson A, Toole J, Ellington HC (2002) Pharmacological characterization of the anandamide cyclooxygenase metabolite: prostaglandin E2 ethanolamide. J Pharmacol Exp Ther 30:900–907Google Scholar
  182. Raukwied R, Watkinson A, McGlone F, Dvorak M (2003) Cannabinoid agonists attenuate capsaicin-induced responses in human skin. Pain102:283–288Google Scholar
  183. Sagar DR, Smith PA, Millns PJ, Smart D, Kendall DA, Chapman V (2004) TRPV1 and CB(1) receptor-mediated effects of the endovanilloid/endocannabinoid N-arachidonoyl-dopamine on primary afferent fibre and spinal cord neuronal responses in the rat. Eur J Neurosci 20:1750184CrossRefGoogle Scholar
  184. Salio C, Fischer J, Franzoni MF, Mackie K, Kaneko T, Conrath M (2001) CB1-cannabinoid and mu-opioid receptor co-localization on postsynaptic target in the rat dorsal horn. Neurorepor 12:3689–3692Google Scholar
  185. Salio C, Doly S, Fischer J, Franzoni M, Conrath M (2002a) Neuronal and astrocytic localization of the cannabinoid receptor-1 in the dorsal horn of the rat spinal cord. Neurosci Lett 329:13PubMedCrossRefGoogle Scholar
  186. Salio C, Fischer J, Franzoni MF, Conrath M (2002b) Pre-and postsynaptic localizations of the CB1 cannabinoid receptor in the dorsal horn of the rat spinal cord. Neuroscience 11:755–764Google Scholar
  187. Sanudo-Pena MC, Strangman NM, Mackie K, Walker JM, Tsou k (1999) CB1 receptor localization in rat spinal cord and roots, dorsal root ganglion, and peripheral nerve. Acta Pharmacol Sin 20:1115–1120Google Scholar
  188. Shire D, Carillon C, Kaghad M, Calandra B, inaldi-Carmona M, Le Fur G, Caput D, Ferrara P (1995) An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing [published erratum appears in J Biol Chem 1996 Dec 27–271(52):33706]. J Biol Chem 270:3726–3731PubMedGoogle Scholar
  189. Silverman JD, Kruger L (1990) Selective neuronal glycoconjugate expression in sensory and autonomic ganglia: relation of lectin reactivity to peptide and enzyme markers. J Neurocytol 19:789–801PubMedCrossRefGoogle Scholar
  190. Simone DA, Ngeow JY, Putterman GJ, LaMotte RH (1987) Hyperalgesia to heat after intradermal injection of capsaicin. Brain Res 41:201–203Google Scholar
  191. Simone DA, Baumann TK, LaMotte RH (1989) Dose-dependent pain and mechanical hyperalgesia in humans after intradermal injection of capsaicin. Pain 38:99–107PubMedCrossRefGoogle Scholar
  192. Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI, Chambers JK, Randall AD, Davis JB (2000) The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol 129:227–230PubMedGoogle Scholar
  193. Smith PB, Martin BR (1992) Spinal mechanisms of.9-tetrahydrocannabinol-induced analgesia. Brain Res 578:8–12PubMedGoogle Scholar
  194. Sokal DM, Elmes SJR, Kendall DA, Chapman V (2003) Intraplantar injection of anandamide inhibits mechanically-evokedresponsesof spinal neurons via activationofCB2receptors in anesthetized rats. Neuropharmacology 45:404–411PubMedCrossRefGoogle Scholar
  195. Strangman NM, Walker JM (1999) The cannabinoid WIN 55,212-2 inhibits the activitydependent facilitation of spinal nociceptive responses. J Neurophysiol 81:472–477Google Scholar
  196. Strangman NM, Patrick SL, Hohmann AG, Tsou K, Walker JM (1998) Evidence for a role of endogenous cannabinoids in the modulation of acute and tonic pain sensitivity. Brain Res 13:323–328Google Scholar
  197. Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97PubMedCrossRefGoogle Scholar
  198. Sumariwalla PF, Gallily R, Tchilibon S, Fride E, Mechoulam R, Feldmann M (2004) A novel synthetic, nonpsychoactive cannabinoid acid (HU-320) with anti inflammatory properties in murine collagen-induced arthritis. Arthritis Rheum 50:985–998PubMedGoogle Scholar
  199. Svendsen KB, Jensen TS, Bach FW (2004) Does the cannabinoid dronabinol reduce central pain inmultiple sclerosis? Randomised double blind placebo controlled crossover trial. BMJ 329:253Google Scholar
  200. Szolcsanyi J, Anton F, Reeh PW, Handwerker HO (1988) Selective excitation by capsaicin of mechano-heat sensitive nociceptors in rat skin. Brain Res 446:262–268PubMedCrossRefGoogle Scholar
  201. Torebjork HE, Lundberg LE, LaMotte RH (1992) Central changes in processing of mechanoreceptive input in capsaicin-inducedsecondaryhyperalgesia inhumans. JPhysiol 448:765–780Google Scholar
  202. Tracey DJ Walker JS (1995) Pain due to nerve damage: are inflammatory mediators involved? Inflamm Res 44:407–411PubMedCrossRefGoogle Scholar
  203. Tsou K, Jang CS (1964) Studies on the site of analgesic action of morphine by intracerebral micro-injection. Sci Sin 13:1099–1109PubMedGoogle Scholar
  204. Tsou K, Lowitz KA, Hohmann AG, Martin WJ, Hathaway CB, Bereiter DA, Walker JM (1996) Suppression of noxious stimulus-evoked expression of FOS protein-like immunoreactivity in rat spinal cord by a selective cannabinoid agonist. Neuroscience 70:791–798PubMedCrossRefGoogle Scholar
  205. Tsou K, Brown S, Sanudo-Pena MC, Mackie K, Walker JM (1998a) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83:393–411PubMedGoogle Scholar
  206. Tsou K, Nogueron MI, Muthian S, Sanudo-Pena MC, Hillard CJ, Deutsch DG, Walker JM (1998b) Fatty acid amide hydrolase is located preferentially in large neurons in the rat central nervous system as revealed by immunohistochemistry. Neurosci Lett 254:137–140PubMedCrossRefGoogle Scholar
  207. Vaugha CW, McGregor IS, Christie MJ (1999)Cannabinoid receptor activation inhibits GABAergic neurotransmission in rostral ventromedial medulla neurons in vitro. Br J Pharmacol 127:935–940Google Scholar
  208. Vaughan CW, Connor M, Bagley EE, Christie MJ (2000) Actions of cannabinoids on membrane properties and synaptic transmission in rat periaqueductal gray neurons in vitro. Mol Pharmacol 57:288–295PubMedGoogle Scholar
  209. Vivian JA, Kishioka S, Butelman ER, Broadbear J, Lee KO, Woods JH (1998) Analgesic, respiratory andheart rate effects of cannabinoidandopioidagonists in rhesus monkeys: antagonist effects of SR 141716A. J Pharmacol Exp Ther 286:697–703PubMedGoogle Scholar
  210. Vogel Z, Bayewitch M, Levy R, Matus-Leibovitch N, Hanus L, Ben-Shabat S, Mechoulam R, Avidor-Reiss T, Barg J (1994) Binding and functional studies with the peripheral and neuronal cannabinoid receptors. Regul Pept 54:313–314CrossRefGoogle Scholar
  211. Walker JM, Huang SM, Strangman NM, Tsou K, Sanudo-Pena MC (1999) Pain modulation by release of the endogenous cannabinoid anandamide. Proc Natl Acad Sci U S A 96:12198–12203PubMedGoogle Scholar
  212. Walker JM, Huang SM, Sanudo-Pena (2000) Identification of the role of endogenous cannabinoids in pain modulation: strategies and pitfalls J Pain 1:20–32Google Scholar
  213. Walker JM, Strangman NM, Huang SM (2001)Cannabinoids and pain. Pain Res Manag 6:74–79PubMedGoogle Scholar
  214. Walter L, Franklin A, Witting A, Moller T, Stella N (2002) Astrocytes in culture produce anandamide and other acylethanolamides. J Biol Chem 27:20869–20876Google Scholar
  215. Walter L, Franklin A, Witting A, Wade C, Xie Y, Kunos G, Mackie K, Stella N (2003) Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci 23:1398–1405PubMedGoogle Scholar
  216. Welch SP, Thomas C, Patrick GS (1995) Modulation of cannabinoid-induced antinociception after intracerebroventricular versus intrathecal administration to mice: possible mechanisms for interaction with morphine.J Pharmacol Exp Ther 272:310–321PubMedGoogle Scholar
  217. Willis WD, Westlund KN, Carlton SM (1995) Pain. In: Paxinos G (ed) The Rat Nervous System, 2nd edn. Academic Press New York, 725–750Google Scholar
  218. Yaks TL (1981) The antinociceptive effects of intrathecally administered levonantradol and desacetyllevonantradol in the rat. J Clin Pharmacol 21:334S–340SGoogle Scholar
  219. Yesilyurt O, Dogrul A, Gul H, Seyrek M, Kusmez O, Ozkan Y, Yildiz O (2003) Topical cannabinoid enhances topical morphine antinociception. Pain 105:303–308PubMedCrossRefGoogle Scholar
  220. Young WSd, Wamsley JK, Zarbin MA, Kuhar MJ (1980)Opioid receptors undergo axonal flow. Scienc 210:76–78CrossRefGoogle Scholar
  221. Yu M, Ives D, Ramesha CS (1997)Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2. J Biol Chem 272:21181–21186PubMedGoogle Scholar
  222. Zeidenberg P, Clark WC, Jaffe J, Anderson SW, Chin S, Malitz S (1973) Effect of oral administration of delta9 tetrahydrocannabinol onmemory, speech, and perception of thermal stimulation: results with four normal human volunteer subjects. Preliminary report. Compr Psychiatry 14:549–556Google Scholar
  223. Zhang J, Hoffert C, Vu HK, Groblewski T, Ahmad S, öDonnell D (2003) Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur J Neurosci 17:2750–2754PubMedCrossRefGoogle Scholar
  224. Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI (1999) Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci U S A 96:5780–5785PubMedCrossRefGoogle Scholar
  225. Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • J. M. Walker
    • 1
  • A G. Hohmann
    • 2
  1. 1.Department of PsychologyIndiana UniversityBloomingtonUSA
  2. 2.Neuroscience and Behavior Program, Department of PsychologyThe University of GeorgiaAthensUSA

Personalised recommendations