Skip to main content

Localization of Important Traits: The Example Pea (Pisum sativum L.)

  • Chapter
Molecular Marker Systems in Plant Breeding and Crop Improvement

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 55))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alconero R, Provvidenti R, Gonsalves D (1986) Three pea seedborne mosaic virus pathotypes from pea and lentil germplasm. Plant Dis 70:783–786

    Google Scholar 

  • Beavis WD (1994) The power and deceit of QTL experiments: Lessons from comparative QTL studies. 49th annual corn and sorghum industry research conference. American Seed Trade Association, Washington, DC, pp 250–266

    Google Scholar 

  • Blixt S. (1977) The gene symbols of Pisum. Pisum Newslett 9:1–59

    Google Scholar 

  • Coyne CJ, Inglis DA, Whitehead SJ, Mc Clendon MT, Muehlbauer FJ (2000) Chromosomal location of Fwf, the Fusariumwilt race 5 resistance gene in Pisum sativum. Pisum Genet 32:20–22

    Google Scholar 

  • Coyne CJ, Meksem K, Mc Phee KE, Inglis DA, Lightfoot D, Mc Clendon MT, Shultz J, Muehlbauer FJ (2001) Positional cloning of Fusarium wilt resistance genes in pea. In: Towards the sustainable production of healthy food, feed and novel products. European Association for Grain Legume Research, Paris, pp 16–17

    Google Scholar 

  • Dirlewanger E, Isaac P, Ranade S, Belajouza M, Cousin R, Devienne D (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88:17–27

    Article  Google Scholar 

  • El-Assal S, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29:435–440

    Article  PubMed  Google Scholar 

  • Fatokun CA, Menancio-Hautea DI, Danesh D, Young ND (1992) Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics 132:841–846

    PubMed  Google Scholar 

  • Frew TJ, Russell AC, Timmerman-Vaughan GM (2002) Sequence-tagged site markers linked to the sbm1 gene for resistance to pea seed-borne mosaic virus in pea. Plant Breed 121:512–516

    Article  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    PubMed  Google Scholar 

  • Grajal-Martin MJ, Muehlbauer FJ (2002) Genomic location of the Fw gene for resistance to fusarium wilt race 1 in peas. J Hered 93:291–293

    Article  PubMed  Google Scholar 

  • Gritton ET, Hagedorn DJ (1975) Linkage of the genes sbm and wlo in peas. Crop Sci 11:945–946

    Google Scholar 

  • Gritton ET, Hagedorn DJ (1980) Linkage of En and St genes in pea. Pisum Newslett 12:26–27

    Google Scholar 

  • Hagedorn WA (1989) Compendium of pea diseases. American Phytopathological Society, St Paul, Minnesota

    Google Scholar 

  • Haglund WA (1984) Fusarium wilts. In: Hagedorn DJ (ed) Compendium of pea diseases. American Phytopathological Society Press, St Paul, Minnesota, pp 22–25

    Google Scholar 

  • Hampton RO (1984) Diseases caused by viruses. In: Hagedorn DJ (ed) Compendium of pea diseases. American Phytopathological Society Press, St Paul, Minnesota, pp 31–37

    Google Scholar 

  • Hare WW, Walker JC, Delwiche EH (1949) Inheritance of a gene for near-wilt resistance in the garden pea. J Agric Res 78:239–250

    Google Scholar 

  • Harland SC (1948) Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity 2:263–269

    Google Scholar 

  • Heringa RJ, van Norel A, Tazelaar MF (1969) Resistance to powdery mildew (Erysiphe polygoni DC) in peas (Pisum sativum L.) Euphytica 18:163–169

    Google Scholar 

  • Hjulsager CK, Lund OS, Johansen E (2002) A new pathotype of pea seedborne mosaic virus explained by the properties of the p3-6k1 and viral genome-linked protein (VPg)-coding regions. Mol Plant Microbe Interact 15:169–171

    PubMed  Google Scholar 

  • Johansen IE, Lund OS, Hjulsager CK, Laursen J (2001) Recessive resistance in Pisum sativum and potyvirus pathotype resolved in a gene-for-cistron correspondence between host and virus. J Virol 75:6609–6614

    Article  PubMed  Google Scholar 

  • King WM, Murfet IC (1985) Flowering in Pisum: a sixth locus, Dne. Ann Bot 56:835–846

    Google Scholar 

  • Lamprecht H (1948) The variation of linkage and the course of crossingover. Agri Hort Genet 6:10–48

    Google Scholar 

  • Lamprecht H (1961) Die Genenkarte von Pisum bei normaler Struktur der Chromosomen. Agri Hort Genet 19:360–401

    Google Scholar 

  • Lamprecht H (1974) Monographie der Gattung Pisum. Steiermarkische Landesdruckerei, Graz

    Google Scholar 

  • Latham LJ, Jones RAC (2001) Alfalfa mosaic and pea seed-borne mosaic viruses in cool season crop, annual pasture, and forage legumes: susceptibility, sensitivity and seed transmission. Aust J Agric Res 52:771–790

    Google Scholar 

  • Laucou V, Haurogné, Ellis N, Rameau C (1998) Genetic mapping in pea. 1. RAPD-based genetic linkage map of Pisum sativum. Theor Appl Genet 97:905–915

    Google Scholar 

  • Lawyer AS (1984) Diseases caused by Ascochyta spp. In: Hagedorn DJ (ed) Compendium of pea diseases. American Phytopathological Society Press, St Paul, Minnesota, pp 11–15

    Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    PubMed  Google Scholar 

  • Marx GA (1971) New linkage relations for chromosome III of Pisum. Pisum Newslett 3:18–19

    Google Scholar 

  • Marx GA (1986) Linkage relationships of Curl, Orc and “Det” with markers on chromosome 7. Pisum Newslett 19:31–32

    Google Scholar 

  • Marx GA, Provvidenti R (1979) Linkage relations of mo. Pisum Newslett 11:28–29

    Google Scholar 

  • Marx GA, Weeden NF, Provvidenti R (1985) Linkage relationships among markers in chromosome III and En, a gene conferring virus resistance. Pisum Newslett 17:57–60

    Google Scholar 

  • Maughan PJ, Maroof MAS, Buss GR (1996) Molecular marker analysis of seed-weight: genomic locations, gene action and evidence for orthologous evolution among three legume species. Theor Appl Genet 93:574–579

    Google Scholar 

  • McCallum JA, Timmerman-Vaughan G, Frew T, Russell A (1997) Biochemical and genetic linkage analysis of green seed color in field pea. J Am Soc Hortic Sci 122:218–225

    Google Scholar 

  • McClendon MT, Inglis DA, McPhee KE, Coyne CJ (2002) DNA markers linked to Fusarium wilt race 1 resistance in pea. J Am Soc Hortic Sci 127:602–607

    Google Scholar 

  • Melchinger AE, Utz HF, Schon CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using bulked segregant populations. Proc Natl Acad Sci USA 88:9828–9832

    PubMed  Google Scholar 

  • Murfet IC (1990) Flowering genes in pea and their use in breeding. Pisum Newslett 22:78–86

    Google Scholar 

  • Murfet IC, Reid JB (1993) Developmental mutants. In: Casey R, Davies DR (eds) Peas — genetics, molecular biology and biotechnology. CAB International, Wallingford, pp 165–216

    Google Scholar 

  • Murfet IC, Taylor SA (1999) Flowering gene Ppd in pea: map position and disturbed segregation of allele ppd-2. J Hered 90:548–550

    Article  Google Scholar 

  • Okubara PA, Inglis DA, Muehlbauer FJ, Coyne CJ (2002) A novel RAPD marker linked to the Fusarium wilt race 5 resistance gene (Fwf) in Pisum sativum. Pisum Genet 34:6–8

    Google Scholar 

  • Pfender WF (1984) Aphanomyces root rot. In: Hagedorn DJ (ed) Compendium of pea diseases. American Phytopathological Society Press, St Paul, Minnesota, pp 25–28

    Google Scholar 

  • Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2002) Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor Appl Genet 106:28–39

    PubMed  Google Scholar 

  • Provvidenti R (1990) Inheritance of resistance to pea mosaic virus in Pisum sativum. J Hered 81:143–145

    Google Scholar 

  • Provvidenti R, Alconero R (1988) Inheritance of resistance to a lentil strain of pea seed-borne mosaic virus in Pisum sativum. J Hered 79:45–47

    Google Scholar 

  • Provvidenti R, Muehlbauer FJ (1990) Evidence of a cluster of linked genes for resistance to pea seedborne mosaic virus and clover yellow vein virus on chromosome 6. Pisum Newslett 22:43–45

    Google Scholar 

  • Provvidenti R, Hampton RO (1991) Chromosomal distribution of genes for resistance to seven potyviruses in Pisum sativum. Pisum Genetics 23:26–28

    Google Scholar 

  • Provvidenti R, Hampton RO (1993) Inheritance of resistance to white lupin mosaic virus in common pea. HortScience 28:836–837

    Google Scholar 

  • Rameau C, Denoue D, Fraval F, Haurogne K, Josserand J, Laucou V, Batge S, Murfet IC (1998) Genetic mapping in pea. 2. Identification of RAPD and SCAR markers linked to genes affecting plant architecture. Theor Appl Genet 97:916–928

    Google Scholar 

  • Schneider A, Walker SA, Sagan M, Duc G, Ellis THN, Downie JA (2002) Mapping of the nodulation loci sym9 and sym10 of pea (Pisum sativum L.). Theor Appl Genet 104:1312–1316

    Article  PubMed  Google Scholar 

  • Schroeder WT, Barton DW (1958) The nature and inheritance of resistance to pea enation mosaic virus in garden pea, Pisum sativum L. Phytopathology 48:628–632

    Google Scholar 

  • Skarzynska A (1988) Supplemental mapping data for chromosome 6. Pisum Newslett 20:34–36

    Google Scholar 

  • Smartt J (1990) Grain legumes: evolution and genetic resources, Chap. 6. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Swiecicki WK, Wolko B, Weeden NF (2000) Mendel's genetics, the Pisum genome and pea breeding. Vortr Pflanzenzuchtg 48:65–76

    Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7:257–264

    Article  Google Scholar 

  • Timmerman GM, Frew TJ, Weeden NF, Miller AL, Goulden DS (1994) Linkage analysis of er-1, a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi DC). Theor Appl Genet 88:1050–1055

    Article  Google Scholar 

  • Timmerman-Vaughan GM, McCallum JA, Frew TJ, Weeden NF, Russell AC (1996) Linkage mapping of quantitative trait loci controlling seed weight in pea (Pisum sativum L.). Theor Appl Genet 93:431–439

    Article  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Russell AC, Khan T, Butler R, Gilpin M, Murray S, Falloon K (2002) QTL mapping of partial resistance to field epidemics of ascochyta blight of peas. Crop Sci 42:2100–2111

    Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1998) Identification of coupling and repulsion phase RAPD markers for powdery mildew resistance gene er-1 in pea. Genome 41:440–444

    Article  Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1999) Identification of AFLP markers for the powdery mildew resistance gene er-2 in pea. Pisum Genet 31:27–29

    Google Scholar 

  • Trognitz F, Manosalva P, Gysin R, Ninio-Lui D, Simor R, del Herrera MR, Trognitz B, Ghislain M, Nelson R (2002) Plant defense genes associated with quantitative resistance to potato late blight in Solanum phureja × dihaploid S. tuberosum hybrids. Mol Plant Microbe Interact 15:587–597

    PubMed  Google Scholar 

  • Utz HF, Melchinger AE (1994) Comparison of different approaches to interval mapping of quantitative trait loci. In: Van Ooijen JW, Jansen J (eds) Biometrics in plant breeding: applications of molecular markers. Proceedings of the 9th Meeting of the EUCARPIA section biometrics in plant breeding. CPRO-DLO, Wageningen, Netherlands, pp 195–204

    Google Scholar 

  • Wade BL (1929) The inheritance of Fusarium wilt resistance in canning peas. Wis Agric Exp Sta Res Bull 97:1–32

    Google Scholar 

  • Weeden NF (1985) An isozyme linkage map for Pisum sativum. In: Habblethwaite PD, Heath MC, Dawkins TCK (eds) The pea crop. Butterworths, London, pp 55–66

    Google Scholar 

  • Weeden NF, Provvidenti R (1985) A marker locus, Adh-1, for resistance to pea enation mosaic virus. J Hered 79:128–131

    Google Scholar 

  • Weeden NF, Provvidenti R, Marx GA (1984) An isozyme marker for resistance to bean yellow mosaic virus in Pisum sativum. J Hered 75:411–412

    Google Scholar 

  • Weeden NF, Kneed BE, Murfet IC (1988) Mapping of the Sn locus to chromosome 2. Pisum Newslett 20:49–51

    Google Scholar 

  • Weeden NF, Provvidenti R, Wolko B (1991) Prx-3 is linked to sbm, the gene conferring resistance to pea seedborne mosaic virus. Pisum Genet 23:42–43

    Google Scholar 

  • Weeden NF, Swiecicki WK, Ambrose M, Timmerman GM (1993) Linkage groups of pea. Pisum Genet 25:4

    Google Scholar 

  • Weeden NF, Timmerman GM, Lu J (1994a) Identifying and mapping genes of economic significance. Euphytica 73:191–198

    Article  Google Scholar 

  • Weeden NF, Wu WY, Gu WK, Cargnoni TL, Lu J, Timmerman GM, Wolko B, Zhu Z (1994b) Applications of DNA amplification technology to vegetable breeding. Proc 7th Int Cong Soc Adv Breed Res Asia Oceania. Taipei, ROC, pp 437–445

    Google Scholar 

  • Weeden NF, Ellis THN, Timmerman-Vaughan GM, Swiecicki WK, Rozov SM, Bernikov VA (1998) A consensus linkage map for Pisum sativum. Pisum Genet 30:1–4

    Google Scholar 

  • Weller JL, Reid JB, Taylor SA, Murfet IC (1997) The genetic control of flowering in pea. Trends Plant Sci 2:412–418

    Article  Google Scholar 

  • Wolko B, Weeden NF (1990) Additional markers for chromosome 6. Pisum Newslett 22:71–74

    Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Ngamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484

    Article  PubMed  Google Scholar 

  • Young ND (1999) A cautiously optimistic vision for marker-assisted breeding. Mol Breed 5:505–510

    Article  Google Scholar 

  • Yu J, Gu WK, Provvidenti R, Weeden NF (1995) Identifying and mapping two DNA markers linked to the gene conferring resistance to pea enation mosaic virus. J Am Soc Hortic Sci 120:730–733

    Google Scholar 

  • Yu J, Gu WK, Weeden NF (1996) Development of an ASAP marker for resistance to bean yellow mosaic virus in Pisum sativum. Pisum Genet 28:31–32

    Google Scholar 

  • Zeng Z-B, Kao C-H, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74:279–289

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Swiecicki, W., Timmerman-Vaughan, G. (2004). Localization of Important Traits: The Example Pea (Pisum sativum L.). In: Lörz, H., Wenzel, G. (eds) Molecular Marker Systems in Plant Breeding and Crop Improvement. Biotechnology in Agriculture and Forestry, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26538-4_9

Download citation

Publish with us

Policies and ethics