Advertisement

DNA Markers for Identification and Evaluation of Genetic Resources in Forest Trees: Case Studies in Abies, Picea and Populus

  • B. Ziegenhagen
  • M. Fladung
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 55)

Keywords

Genetic Resource Forest Tree Root Sucker rolC Gene Forest Tree Breeding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartels H (1971a) Genetic control of multiple esterases from needles and macro-gametophytes of Picea abies. Planta 99:283–289CrossRefGoogle Scholar
  2. Bartels H (1971b) Isoenzymes and their significance for forest tree breeding and genetics. Allg Forstz 3:50–52Google Scholar
  3. Bergmann F (1973) Genetische Untersuchungen bei Picea abies mit Hilfe der Isoenzym-Identifizierung. III. Geographische Variation an 2 Esterase und 2 Leucin-aminopeptidase-Loci in der schwedischen Fichtenpopulation. Silvae Genet 22:63–66Google Scholar
  4. Bergmann F (1974a) Genetischer Abstand zwischen Populationen. II. Die Bestimmung des genetischen Abstands zwischen europäischen Fichtenpopulationen (Picea abies) auf der Basis von Isoenzym-Genhäufigkeiten. Silvae Genet 23:28–32Google Scholar
  5. Bergmann F (1974b) The genetics of some isoenzyme systems in spruce endosperm (Picea abies). Genetika 6:353–360Google Scholar
  6. Bialozyt R, Ziegenhagen B, Fladung M (2002) Modellierung des Genflusses für die Risikoabschätzung gentechnisch veränderter Bäume. In: Peschel T, Mrzljak J, Wiegleb G (eds) Verhandlungen der Gesellschaft für Ökologie, vol 32. Landschaft im Wandel — Ökologie im Wandel. Verlag Die Werkstatt, Göttingen, p 424Google Scholar
  7. Birky CW Jr, Fuerst P, Maruyama T (1989) Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmatic cells, and comparison to nuclear genes. Genetics 121:613–627PubMedGoogle Scholar
  8. Campbell MM, Brunner AM, Jones HM, Strauss SH (2003) Forestry's fertile crescent: the application of biotechnology to forest trees. Plant Biotech J 1:141–154Google Scholar
  9. Chaffey N (1999) Wood formation in forest trees: from Arabidopsis to Zinnia. Trends Plant Sci 4:203–204PubMedGoogle Scholar
  10. Chaffey N, Cholewa E, Regan S, Sundberg B (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiol Plant 114:594–600CrossRefPubMedGoogle Scholar
  11. Chase MW, Soltis DE, Olmstaed RG, Morgan D et al. (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Garden 80:528–580Google Scholar
  12. Cremer E, Liepelt S, Ziegenhagen B, Hussendörfer E (2003) Combined use of chloroplast DNA-microsatellite and isozyme gene markers for seed source identification in silver fir. For Genet 10(3):165–171Google Scholar
  13. Degen B, Ziegenhagen B, Gillet E, Scholz F (1995) Computer-aided search for codominant markers in complex DNA banding patterns — a case study in Abies alba Mill. Silvae Genet 44:274–282Google Scholar
  14. Degouilloux M-F, Pemonge M-H, Petit RJ (2002) Novel perspectives in wood certification and forensics: dry wood as a source of DNA. Proc R Soc Lond B 269:1039–1046CrossRefGoogle Scholar
  15. Fladung M, Ziegenhagen B (1998) M13 DNA fingerprinting can be used in studies on phenotypical revisions of forest tree mutants. Trees 12:310–314Google Scholar
  16. Fladung M, Muhs HJ (2000) Field release with Populus tremula (rolC-gene) in Großhansdorf. Umweltbundesamt (ed). Humboldt University, Berlin, pp 40–45Google Scholar
  17. Fladung M, Muhs HJ, Ahuja MR (1996) Morphological changes observed in transgenic Populus carrying the rolC gene from Agrobacterium rhizogenes. Silvae Genet 45:349–354Google Scholar
  18. Fladung M, Nowitzki O, Ziegenhagen B, Kumar S (2003) Vegetative dispersal capacity of field released transgenic aspen trees is besides generative propagation also an important component in risk assessment. Trees Struct Funct 17:412–416CrossRefGoogle Scholar
  19. FSaat G (1994) Gesetz über forstliches Saat-und Pflanzgut (FSaatG) in der derzeit anzuwendenden Fassung der Bekanntmachung von 26. Juli 1979 Bundesgesetzblatt (BGBl I:1242), zuletzt geändert durch Artikel 22 des Gesetzes vom 2. August 1994 (BGBl I:2018)Google Scholar
  20. Gallego Martin F, Sánchez Anta MA, Navarro Andrés F (1987) Datos cariológicos de algunas Salicaceas. Stud Bot 6:163–167Google Scholar
  21. Gielly L, Taberlet P (1994) The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences. Mol Biol Evol 11(5):769–777PubMedGoogle Scholar
  22. Gillet EM (ed) (1999) ‘Which marker for which purpose?’ Final compendium of the research project ‘Development, optimization and validation of molecular tools for assessment of biodiversity in forest trees’ in the European Union DGXII Biotechnology FW IV Research Programme ‘Molecular Tools for Biodiversity'. URL: http://www.sub.gwdg.de/ebook/y/1999/ whichmarker/index.htmGoogle Scholar
  23. Gladstone WT, Ledig FT (1990) Reducing pressure on natural forests through high-yield forestry. For Ecol Manage 35:69–78CrossRefGoogle Scholar
  24. Glaubitz JC, Moran GF (2000) Genetic tools: the use of biochemical and molecular markers. In: Young A, Boshier D, Boyle T (eds) Forest conservation genetics. CSIRO Publ, Collingwood, Australia pp 39–59Google Scholar
  25. Gomez A, Pintos B, Aguirinao E, Manzanera JA, Bueno MA (2001) SSR markers for Quercus suber tree identification and embryo analysis. J Hered 92:292–295CrossRefPubMedGoogle Scholar
  26. Guries RP, Stettler RF (1976) Pre-fertilization barriers to hybridisation in the poplars. Silvae Genet 25:37–44Google Scholar
  27. Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown AD, Kahler AL, Sunderlands (eds) Plant population genetics, breeding, and genetic resources. Sinauer Associates, Sunderland, Mass, pp 43–63Google Scholar
  28. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linnean Soc 68:87–112Google Scholar
  29. Hewitt GM (2000) Speciation, hybrid zones and phylogeographie — or seeing genes in space and time. Mol Ecol 10:537–549CrossRefGoogle Scholar
  30. Hristoforoghu K, Endemann M, Wilhelm E (2000) Monitoring of genetic stability in somatic embryo clones of Quercus robur L. with flow cytometry and microsatellites. In: Espinel S, Ritter E (eds) Proceedings of the international congress “Applications of biotechnology to forest genetics” (Biofor 99), Vitoria-Gasteiz, 22–25 Sept 1999, Vitoria-Gasteiz, SpainGoogle Scholar
  31. Ipsen A, Ziegenhagen B (2001) New insights into allelic diversity of a phosphoenolpyruvate carboxylase in the conifer Picea abies (L.) Karst. Planta 214:265–273PubMedGoogle Scholar
  32. Konnert M, Bergmann F (1995) The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Syst Evol 195:19–30Google Scholar
  33. Konnert M, Fromm M, Hussendörfer E (2002) Referenzproben zur Identitätssicherung von forstlichem Vermehrungsgut. AFZ Der Wald 5:214–215Google Scholar
  34. Kormuták A, Vookova B, Ziegenhagen B (2002) Reproductive isolation between Colorado white fir (Abies concolor) and the Mediterranean firs. Biologia (Bratislava) 57:527–532Google Scholar
  35. Langner W (1953) Eine Mendelspaltung bei Aurea Formen von Picea abies (L.) Karst. als Mittel zur Klärung der Befruchtungsverhältnisse im Walde. Z Forstgenet Forstpflanzenzücht 2:49–51Google Scholar
  36. Leroy XL, Leo K, Branchard M (2000) Plant genomic instability variation detected by microsatellite-primers. EJB Electr J Biotechnol 3Google Scholar
  37. Liepelt S, Kuhlenkamp V, Anzidei M, Vendramin GG, Ziegenhagen B (2001) Pitfalls in determining size homoplasy of microsatellite loci. Mol Ecol Notes 1:332–335Google Scholar
  38. Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates postglacial gene flow among refugia. Proc Natl Acad Sci USA 99:14590–14594CrossRefPubMedGoogle Scholar
  39. Llamas-Gómez L, Braun H (1994) Part A: Untersuchungen über ökologisch-genetische Anpassungsvorgänge bei der Tanne (Abies alba Mill.) in unterschiedlich immissionsbelasteten Regionen unter besonderer Berücksichtigung des Erzgebirges. In: Sächsische Landesanstalt für Forsten (ed) Schriftenreihe der Sächsischen Landesanstalt für Forsten — Genetik und Waldbau der Weißtanne, Graupa, pp 1–64Google Scholar
  40. Müller-Starck G, Ziehe M (eds) (1992) Genetic variation in forest tree populations in Europe. Sauerlaender's Verlag, Frankfurt am MainGoogle Scholar
  41. Neale DB, Devey ME, Jermstad KD, Ahuja MR, Alosi MC, Marshall KA (1992) Use of DNA markers in forest tree improvement research. New For 6:391–407Google Scholar
  42. Parducci L (2000) Genetics and evolution of the Mediterranean Abies species. PhD Thesis, Umea, SwedenGoogle Scholar
  43. Parducci L, Szmidt AE (1999) PCR-RFLP analysis of cpDNA in the genus Abies. Theor Appl Genet 98:802–808CrossRefGoogle Scholar
  44. Petit RJ, Vendramin GG (2003) Plant phylogeography based on organelle genes: an introduction. In: Weiss S, Ferrand N (eds) Phylogeography of southern European refugia. Kluwer, Dordrecht (in press)Google Scholar
  45. Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855CrossRefGoogle Scholar
  46. Petit RJ, Aguinagalde I, Beaulieu J-L, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martin JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565PubMedGoogle Scholar
  47. Purugganan MD (2000) The molecular population genetics of regulatory genes. Mol Ecol 9:451–1461CrossRefGoogle Scholar
  48. Rothe GM, Bergmann F (1995) Increased efficiency of Norway spruce heterozygous phosphoenolpyruvate carboxylase phenotype in response to heavy air pollution. Angew Bot 69:27–30Google Scholar
  49. Scholz F, Bergmann F (1994) Genetic effects of environmental pollution on tree populations. In: Kim ZS, Hattemer HH (eds) Conservation and manipulation of genetic resources in forestry. Kwangmungak Publ, Seoul, Korea, pp 34–50Google Scholar
  50. Schubert R, Müller-Starck G, Riegel R (2001) Development of EST-PCR markers and monitoring their intrapopulational genetic variation in Picea abies (L.) Karst. Theor Appl Genet 103:1223–1231CrossRefGoogle Scholar
  51. Smulders MJM, van der Schoot J, Arens P, Vosman B (2001) Trinucleotide repeat microsatellite markers for black poplar (Populus nigra L.). Mol Ecol Notes 1:188–190CrossRefGoogle Scholar
  52. Taylor G (2002) Populus: Arabidopsis for forestry. Do we need a model tree? Ann Bot 90:681–689. URL: http://www.ejb.org.content/vol3/issue2/full2CrossRefPubMedGoogle Scholar
  53. Van der Schoot J, Pospiskova M, Vosman B, Smulders MJM (2000) Development and characterization of microsatellite markers in black poplar (Populus nigra L.). Theor Appl Genet 101:317–322CrossRefGoogle Scholar
  54. Vendramin GG, Ziegenhagen B (1997) Characterization and inheritance of polymorphic plastid microsatellites in Abies. Genome 40:857–864PubMedGoogle Scholar
  55. Vendramin GG, Degen B, Petit RJ, Anzidei M, Madaghiele A, Ziegenhagen B (1999) High level of variation at Abies alba chloroplast microsatellite loci in Europe. Mol Ecol 8:1117–1126PubMedGoogle Scholar
  56. Vendramin GG, Scotti I, Ziegenhagen B (2003) Microsatellites in forest trees: characteristics, identification and applications. In: Kumar S, Fladung M (eds) Molecular genetics and breeding of forest trees. Haworth Press, Bringhamton, NY (in press)Google Scholar
  57. Wu J, Krutovskii KV, Strauss SH (1998) Abundant mitochondrial genome diversity, population differentiation and applications. Genetics 150:1605–1614PubMedGoogle Scholar
  58. Wullschleger SD, Jansson S, Taylor G (2002) Genomics and forest biology: Populus emerges as the perennial favorite. Plant Cell 14:2651–2655PubMedGoogle Scholar
  59. Young A, Boshier D, Boyle T (eds) (2000) Forest conservation genetics. CSIRO Publ, Collingwood, AustraliaGoogle Scholar
  60. Ziegenhagen B, Fladung M (1997a) Molekulare Methoden zur Erfassung von Biodiversität bei Waldbäumen. In: Welling M (ed) Biologische Vielfalt in Ökosystemen — Konflikt zwischen Nutzung und Erhaltung, Senatsarbeitsgruppe “Ökosysteme/Ressourcen”, Braunschweig, 22–24 Apr 1997. Braunschweig. Köllen Druck + Verlag = Schriftenr. d. BML. Reihe A: Angew Wiss 465:397–399Google Scholar
  61. Ziegenhagen B, Fladung M (1997b) Variation in psbC gene region of gymnosperms and angiosperms as detected by a single restriction site polymorphism. Theor Appl Genet 94:1065–1071CrossRefGoogle Scholar
  62. Ziegenhagen B, Scholz F, Madaghiele A, Vendramin GG (1998) Chloroplast microsatellites as markers for paternity analysis in Abies alba. Can J For Res 28:317–321CrossRefGoogle Scholar
  63. Ziegenhagen B, Degen B, Petit RJ, Anzidei M, Madaghiele A, Scholz F, Vendramin GG (2001) Highly polymorphic uniparentally inherited DNA markers for spatial genetic analysis of silver fir (Abies alba Mill.) populations. In: Müller-Starck G, Schubert R (eds) Genetic response of forest systems to changing environmental conditions. Forest tree sciences, vol 70. Kluwer, Dordrecht, pp 139–149Google Scholar
  64. Ziegenhagen B, Ipsen A, Kuhlenkamp V, Vendramin GG (2002a) Nucleotide diversity of a nuclear gene in gymnosperms — DNA marker development and application in a large natural population of Norway spruce [Picea abies (L.) KARST]. Symposium of population and evolutionary genetics of forest trees. IUFRO Research Group 2.04.00. Stara Lesna, Slovakia, 25–29 Aug 2002Google Scholar
  65. Ziegenhagen B, Brettschneider R, Kuhlenkamp V, Fladung M. (2002b) Non-radioactive DIGlabelled AFLPs for application in forest trees. In: Van Dyke K, Van Dyke C, Woodfork K (eds) Luminescence biotechnology: instruments and applications. CRC Press, Boca Raton, pp 211–222Google Scholar
  66. Ziegenhagen B, Liepelt S, Kuhlenkamp V, Fladung M (2003) Molecular identification of individual oak and fir trees from maternal tissues of their seeds. Trees 17:345–350Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • B. Ziegenhagen
    • 1
  • M. Fladung
    • 2
  1. 1.Faculty of Biology, Conservation BiologyPhilipps-University of MarburgMarburgGermany
  2. 2.Institute for Forest Genetics and Forest Tree BreedingFederal Research Centre for Forestry and Forest ProductsGrosshansdorfGermany

Personalised recommendations