Forest Management and Conservation Using Microsatellite Markers: The Example of Fagus

  • Y. Tsumura
  • M. Takahashi
  • T. Takahashi
  • N. Tani
  • Y. Asuka
  • N. Tomaru
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 55)


Genetic Structure Microsatellite Marker Seed Orchard Spatial Genetic Structure Parent Clone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asuka Y, Tani N, Tsumura Y, Tomaru N (2004a) Development and characterization of microsatellite markers for Fagus crenata Blume. Mol Ecol Note 4:101–103CrossRefGoogle Scholar
  2. Asuka Y, Tomaru N, Nishimura N, Tsumura Y, Yamamoto S (2004b) Spatial genetic structure of Fagus crenata (Fagaceae) in an old-growth beech forest revealed by microsatellite markers. Mol Ecol 13:1241–1250CrossRefPubMedGoogle Scholar
  3. Buiteveld J, Bakker EG, Bovenschen J, de Vries SMG (2001) Paternity analysis in a seed orchard of Quercus robur L. and estimation of the amount of background pollination using microsatellite markers. For Genet 8:331–337Google Scholar
  4. Cifarelli RA, Gallitelli M, Cellini F (1995) Random amplified hybridization microsatellites (RAHM): isolation of a new class of microsatellite-containing DNA clones. Nucleic Acid Res 23:3802–3803PubMedGoogle Scholar
  5. Doligez A, Baril C, Joly HI (1998) Fine-scale spatial genetic structure with nonuniform distribution of individual. Genetics 148:905–919PubMedGoogle Scholar
  6. Dow BD, Ashley MV (1996) Microsatellite analysis of seed dispersal and parentage of sapling in bur oak, Quercus macrocarpa. Mol Ecol 5:615–627Google Scholar
  7. Epperson BK, Chung MG (2001) Spatial genetic structure of allozyme polymorphisms within populations of Pinus strobus (Pinaceae). Am J Bot 88:1006–1010PubMedGoogle Scholar
  8. Fischer D, Bachmann K (1998) Microsatellite enrichment in organisms with large genomes (Allium cepa L.). Biotechniques 24:796–802PubMedGoogle Scholar
  9. Friedman ST, Adams WT (1985) Estimation of gene flow into two seed orchards of loblolly pine (Pinus taeda L.). Theor Appl Genet 69:609–615Google Scholar
  10. Fujii N, Tomaru N, Okuyama K, Koike T, Mikami T, Ueda K (2002) Chloroplast DNA phylogeography of Fagus crenata (Fagaceae) in Japan. Plant Systemat Evol 232:21–33Google Scholar
  11. Hamilton MB, Pincus EL, di Fiore A, Fleischer RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27:500–507PubMedGoogle Scholar
  12. Hamrick JL (1989) Isozymes and the analysis of genetic structure in plant populations. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides Press, Portland, Oregon, USA, pp 87–105Google Scholar
  13. Igarashi T (1996) The relationship between variation of fructification and efficiency of pollination in Fagus crenata and F. japonica. Msc Diss, University of TokyoGoogle Scholar
  14. Karagyozov L, Kalcheva ID, Chapman VM (1993) Construction of random small-insert genomic libraries highly enriched for simple sequence repeats. Nucleic Acids Res 21:3911–3912PubMedGoogle Scholar
  15. Kelly JK, Willis JH (2002) A manipulative experiment to estimate biparental inbreeding in monkeyflowers. Int J Plant Sci 163:575–579CrossRefGoogle Scholar
  16. Kirkpatrick BW, Bradshaw M, Barendse W, Dentine MR (1995) Development of bovine microsatellite markers from a microsatellite-enriched library. Mamm Genome 6:526–528CrossRefPubMedGoogle Scholar
  17. Kitamura S, Murata G (1979) Colored illustrations of woody plants of Japan, vol II. Hoikusha Publ, Osaka, JapanGoogle Scholar
  18. Kitamura K, Shimada K, Nakashima K, Kawano S (1997) Demographic genetics of the Japanese beech, Fagus crenata, at Ogawa forest preserve, Ibaraki, central Honshu, Japan. I. Spatial genetic substructuring in local population. Plant Species Biol 12:107–136CrossRefGoogle Scholar
  19. Kouno K, Mukouda M (1985) Flowering and seed-setting traits of three broadleaf trees, Fagus crenata, Cornus controvera and Aesculus turbinata. Bull Tohoku For Tree Breed Ctr 25:74–76Google Scholar
  20. Lench NJ, Norris A, Bailey A, Booth A, Markham AF (1996) Vectorette PCR isolation of microsatellite repeat sequence using anchored dinucleotide repeat primers. Nucleic Acids Res 24:2190–2191PubMedGoogle Scholar
  21. Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401PubMedGoogle Scholar
  22. Loveless MD, Hamrick JL (1984) Ecological determinants of generic structure in plant populations. Annu Rev Ecol Sys 15:65–95Google Scholar
  23. Lyall JEW, Brown GM, Furlong RA, Ferguson-Smith MA, Affara NA (1993) Amethod for creating chromosome-specific plasmid libraries enriched in clones containing [CA]n microsatellite repeat sequences directly from flow-sorted chromosome. Nucleic Acids Res 21:4641–4642PubMedGoogle Scholar
  24. Merzeau D, Comps B, Thiebaut B, Cuguen J, Letouzey J (1994) Genetic structure of natural stands of Fagus sylvatica L. (beech). Heredity 72:269–277Google Scholar
  25. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DANN. Nucleic Acids Res 8:4321–4325PubMedGoogle Scholar
  26. Nakashizuka T (1987) Regeneration dynamic of beech forests in Japan. Vegetatio 69:169–175CrossRefGoogle Scholar
  27. Obayashi K, Tsumura Y, Ihara-Ujino T, Niiyama K, Tanouchi H, Suyama Y, Washitani I, Lee C-T, Lee S-L, Muhammad N (2002) Genetic diversity and outcrossing rate between undisturbed and selectively logged forests of Shorea curtisii (Dipterocarpaceae) using microsatellite DNA analysis. Int J Plant Sci 163:151–158Google Scholar
  28. Ohkubo T (1992) Structure and dynamics of Japanese beech (Fagus japonica Maxim.) stools and sprouts in the regeneration of the natural forests. Vegetatio 101:65–80CrossRefGoogle Scholar
  29. Okaura T, Harada K (2002) Phylogeographical structure revealed by chloroplast DNA variation in Japanese beech (Fagus crenata Blume). Heredity 88:322–329CrossRefPubMedGoogle Scholar
  30. Ostrander EA, Jong PM, Rine J, Duyk G (1992) Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. Proc Natl Acad Sci USA 89:3419–3423PubMedGoogle Scholar
  31. Pakkanen A, Nikkanen T, Pulkkinen P (2000) Annual variation in pollen contamination and outcrossing in a Picea abies seed orchard. Scand J For Res 15:399–404CrossRefGoogle Scholar
  32. Peters R (1997) Beech forests. pp. 169, Kluwer, DordrechtGoogle Scholar
  33. Rajora OP, Rahman MH, Buchert GP, Dancik BP (2000) Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobus) in Ontario, Canada. Mol Ecol 9:339–348CrossRefPubMedGoogle Scholar
  34. Streiff R, Labbe T, Bacilieri R, Steinkellner H, Glossl J, Kremer A (1998) Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol Ecol 7:317–328CrossRefGoogle Scholar
  35. Takahashi H, Nirawasa N, Furukawa T (1996) An efficient method to clone chicken microsatellite repeat sequences. Jpn Poultry Sci 33:292–299Google Scholar
  36. Takahashi M, Mukouda M, Koono K (2000) Differences in genetic structure between two Japanese beech (Fagus crenata Blume) stands. Heredity 84:103–115CrossRefPubMedGoogle Scholar
  37. Takahashi T, Konuma A, Ohkubo T, Taira H, Tsumura Y (2004) Comparison of spatial genetic structures in Fagus crenata and F. japonica by the use of microsatellite markers. Silvae Genet (in press)Google Scholar
  38. Tanaka K, Tsumura Y, Nakamura T (1999) Development and polymorphism of microsatellite markers for Fagus crenata and closely related species, F. japonica. Theor Appl Genet 99:11–15CrossRefGoogle Scholar
  39. Tomaru N, Mitsutsuji T, Takahashi M, Tsumura Y, Uchida K, Ohba K (1997) Genetic diversity in Fagus crenata (Japanese beech): influence of the distributional shift during the late-Quaternary. Heredity 78:241–251CrossRefGoogle Scholar
  40. Tomaru N, Takahashi M, Tsumura Y, Takahashi M, Ohba K (1998) Intraspecific variation and phylogeographic patterns of Fagus crenata (Fagaceae) mitochondrial DNA. Am J Bot 85:629–636Google Scholar
  41. Ueno S, Tomaru N, Yoshimaru H, Manabe T, Yamamoto S (2000) Genetic structure of Camellia japonica L. in an old-growth evergreen forest, Tsushima, Japan. Mol Ecol 9:647–656CrossRefPubMedGoogle Scholar
  42. UNESCO (2002) Properties inscribed on the word heritage list world heritage centre. UNESCO, ParisGoogle Scholar
  43. Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Y. Tsumura
    • 1
  • M. Takahashi
    • 2
  • T. Takahashi
    • 3
  • N. Tani
    • 1
  • Y. Asuka
    • 4
  • N. Tomaru
    • 4
  1. 1.Department of Forest GeneticsForestry and Forest Products Research InstituteTsukuba, IbarakiJapan
  2. 2.Forest Tree Breeding CenterJuo, IbarakiJapan
  3. 3.Graduate School of Science and TechnologyNiigata UniversityNiigataJapan
  4. 4.Laboratory of Forest Ecology and Physiology, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan

Personalised recommendations