From Theory to Practice: Marker-Assisted Selection in Maize

  • D.A. Hoisington
  • A.E. Melchinger
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 55)


Quantitative Trait Locus Double Haploid Quantitative Trait Locus Mapping Quantitative Trait Locus Region Recombinant Inbred Line Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bouchez A, Hospital F, Caussee M, Gaillais A, Charcosset A (2002) Marker-assisted introgression favorable alleles at quantitative trait loci between maize elite lines. Genetics 162:1945–1959PubMedGoogle Scholar
  2. Coe E, Cone K, McMullen M, Chen S, Davis G, Gardiner J, Liscum E, Polacco M, Paterson A, Sanchez-Villeda H, Soderlund C, Wing R (2002) Access to the maize genome: an integrated physical and genetic map. Plant Physiol 128:9–12CrossRefPubMedGoogle Scholar
  3. Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Genet Rev 3:22–32CrossRefGoogle Scholar
  4. Dreher K, Khairallah M, Ribaut J-M, Morris M (2003) Money matters (I): costs of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYT. Mol Breed 11:221–234CrossRefGoogle Scholar
  5. Dudley JW (1993) Molecular markers in plant improvement: Manipulation of genes affecting quantitative traits. Crop Sci 33:660–668Google Scholar
  6. Edwards MD, Stuber CW, Wendel JF (1987) Molecular-marker-facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution, and types of gene action. Genetics 116:113–125PubMedGoogle Scholar
  7. Gardiner J, Melia-Hancock S, Hoisington DA, Chao S, Coe EH (1993) Development of a core RFLP map in maize using an immortalized-F2 population. Genetics 134:917–930PubMedGoogle Scholar
  8. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324Google Scholar
  9. Hallauer AR, Miranda JB (1981) Quantitative genetics in maize breeding. Iowa State University Press, AmesGoogle Scholar
  10. Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J (1986) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet 72:761–769CrossRefGoogle Scholar
  11. Hoisington D (1992) Maize as a model system. In: Chapman GP (ed) Grass evolution and domestication. Cambridge Univ Press, LondonGoogle Scholar
  12. Hospital F, Moreau L, Lacoudre F, Charcosset A, Gallais A (1997) More on the efficiency of marker-assisted selection. Theor Appl Genet 95:1181–1189Google Scholar
  13. Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455PubMedGoogle Scholar
  14. Jiang C, Zeng Z-B (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127PubMedGoogle Scholar
  15. Khavkin E, Coe E (1997) Mapped demonic locations for developmental functions and QTLs reflect concerted groups in maize (Zea mays L.). Theor Appl Genet 95:343–352Google Scholar
  16. Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756Google Scholar
  17. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedGoogle Scholar
  18. Lee J-M, Williams ME, Tingey SV, Rafalski JA (2002) DNA array profiling of gene expression changes during maize embryo development. Funct Integr Genom 2:13–27Google Scholar
  19. Melchinger AE, Utz HF, Schön CC (1998) QTL mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–402PubMedGoogle Scholar
  20. Moreau L, Charcosset A, Hospital F, Gallais A (1998) Marker-assisted selection efficiency in populations of finite size. Genetics 148:1353–1365PubMedGoogle Scholar
  21. Moreau L, Lemarié S, Charcosset A, Gallais A (2000) Economic efficiency of one cycle of marker-assisted selection. Crop Sci 40:329–337Google Scholar
  22. Morris M, Dreher K, Ribaut J-M, Khairallah M (2003) Money matters (II): costs of maize inbred line conversion schemes at CIMMYT using conventional and marker-assisted selection. Mol Breed 11:235–247Google Scholar
  23. Ragot M, Hoisington DA (1993) Molecular markers for plant breeding: comparisons of RFLP and RAPD genotyping costs. Theor Appl Genet 86:975–984CrossRefGoogle Scholar
  24. Ragot M, Biasiolli M, Delbut MF, Dell'orco A, Malgarina L, Thevenin P, Vernoy J, Vivant J, Zimmermann R, Gay G (1994) Marker-assisted backcrossing: a practical example. In: Bervillé A, Tersac M (eds) Techniques et utilisations des marqueurs moléculaires. Les colloques 72. INRA, Versailles, France, pp 45–56Google Scholar
  25. Ribaut J-M, Hoisington DA (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 3:236–239CrossRefGoogle Scholar
  26. Ribaut J-M, Betrán J (1999) Single large-scale marker-assisted selection (SLS-MAS). Mol Breed 5:531–541Google Scholar
  27. Ribaut J-M, Hoisington DA, Deutsch JA, Jiang C, González-de-León D (1996) Identification of quantitative trait loci under drought conditions in tropical maize I. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914CrossRefGoogle Scholar
  28. Ribaut J-M, Jiang C, González-de-León D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize II. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896Google Scholar
  29. Ribaut J-M, Jiang C, Hoisington D (2002) Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Sci 42:557–565Google Scholar
  30. Schön CC, Melchinger AE, Boppenmaier J, Brunklaus-Jung E, Herrmann RG, Seitzer JF (1994) RFLP mapping in maize: Quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci 34:378–389Google Scholar
  31. Stuber CW (1995) Mapping and manipulating quantitative traits in maize. Trends Genet 11:477–481PubMedGoogle Scholar
  32. Stuber CW, Polacco M, Senior ML (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase yield potential. Crop Sci 39:1571–1583Google Scholar
  33. Thoday JM (1961) Location of polygenes. Nature 191:368–370Google Scholar
  34. Utz HF, Schön CC, Melchinger AE (1994) Markergestützte Selektion auf Qualitätsmerkmale mittels RFLP in einem Körnermaisexperiment. Arbeitstagung der Arbeitsgemeinschaft der Saatzuchtleiter in Gumpenstein 1993, pp 69–74Google Scholar
  35. Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by QTL determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849PubMedGoogle Scholar
  36. Van Berloo R, Stam P (1998) Marker-assisted selection in autogamous RIL populations: a simulation study. Theor Appl Genet 96:147–154CrossRefGoogle Scholar
  37. Van Berloo R, Stam P (1999) Comparison between marker-assisted selection and phenotypical selection in a set of Arabidopsis thaliana recombinant inbred lines. Theor Appl Genet 98:113–118CrossRefGoogle Scholar
  38. Whittaker JC (2001) Marker-assisted selection and introgression. In: Balding DJ, Bishop M, Cannings C (eds) Handbook of statistical genetics, Wiley, New York, pp 673–693Google Scholar
  39. Willcox MC, Khairallah MM, Bergvinson D, Crossa J, Deutsch JA, Edmeades GO, González-de-León D, Jiang C, Jewell DC, Mihm JA, Williams WP, Hoisington D (2002) Selection for resistance to Southwestern Corn Borer using marker-assisted and conventional backcrossing. Crop Sci 42:1516–1528Google Scholar
  40. Yousef GG, Juvik JA (2001) Comparison of phenotypic and marker-assisted selection for quantitative traits in sweet corn. Crop Sci 41:645–655Google Scholar
  41. Yu K, Park SJ, Poysa V (2000) Marker-assisted selection of common bean for resistance to common bacterial blight: efficacy and economics. Plant Breed 119:411–415CrossRefGoogle Scholar
  42. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • D.A. Hoisington
    • 1
  • A.E. Melchinger
    • 2
  1. 1.International Maize and Wheat Improvement CenterApplied Biotechnology Center and BioinformaticsMexicoD.F. Mexico
  2. 2.Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany

Personalised recommendations