Markers in Fruit Tree Breeding: Improvement of Peach

  • E. Dirlewanger
  • P. Arús
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 55)


Linkage Group Powdery Mildew Sweet Cherry Sour Cherry Peach Fruit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott AG, Rajapakse S, Sosinski B, Lu ZX, Sossey-Alaoui K, Gannavarapu M, Reighard G, Ballard RE, Baird WV, Scorza R, Callahan A (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Hortic 465:41–49Google Scholar
  2. Abbott AG, Lecouls AC, Wang Y, Georgi L, Scorza R, Reighard G (2002) Peach: The model genome for Rosaceae genomics. Acta Hortic 592:199–203Google Scholar
  3. Aranzana MJ, Garcia-Mas J, Carbo J, Arús P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92CrossRefGoogle Scholar
  4. Aranzana MJ, Carbo J, Arús P (2003a) Microsatellite variability in peach [Prunus persica (L.) Batsch]: cultivar identification, marker mutation, pedigree inferences and population structure. Theor Appl Genet 106:1341–1352PubMedGoogle Scholar
  5. Aranzana MJ, Pineda A, Cosson P, Ascasibar J, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arùs P (2003b) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825PubMedGoogle Scholar
  6. Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218Google Scholar
  7. Arús P, Dirlewanger E, Quarta R, Tobutt K, J Ballester, Boskovic R, Dettori MT, de Vicente C, Jàuregui B, Joobeur T, Russell K, Verde I, Viruel M (1999) Location of 20 major genes of peach, almond and cherry on the Prunus linkage map. Plant and animal genome VII. San Diego, 17–21 Jan 1999)Google Scholar
  8. Arús P, Mnejja M, Dirlewanger E, Esmenjaud D (2003) High marker density around the peach nematode resistance I genes. Proceedings of the 1st international symposium on rootstock for deciduous fruit tree species, ISHS Fruit Section. Acta Hortic (in press)Google Scholar
  9. Asero R, Mistrello G, Roncarolo DC, de Vries S, Gautier MF, Ciurana CLF, Verbeek E, Mohammadi T, Knul-Brettlova V, Akkerdaas JH, Bulder I, Aalberse RC, van Ree R (2000) Lipid transfert protein: a pan allergen in plant-derived foods that is highly resistant to pepsin digestion. Int Arch Allergy Immunol 122:20–32CrossRefGoogle Scholar
  10. Bailey JS, French AP (1949) The inheritance of certain fruit and foliage characters in the peach. Mass Agric Expt Sta Bull p 452Google Scholar
  11. Baird WV, Estager AS, Wells J (1994) Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. J Am Soc Hort Sci 119:1312–1316Google Scholar
  12. Bergougnoux V, Claverie M, Bosselut N, Lecouls AC, Esmenjaud D, Dirlewanger E, Salesses G (2002) Marker-assisted selection of the Ma gene from Myrobalan Plum for a complete-spectrum root-knot nematode (RKN) resistance in Prunus rootstocks. Acta Hortic 592 (ISHS 2002):223–228Google Scholar
  13. Blake MA (1932) The J H Hale peach as a parent in peach crosses. Proc Am Soc Hortic Sci 29:131–136Google Scholar
  14. Blake MA (1937) Progress in peach breeding. Proc Am Soc Hortic Sci 35:49–53Google Scholar
  15. Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529PubMedGoogle Scholar
  16. Botton A, Begheldo M, Rasori A, Bonghi C, Tonutti P (2002) Factors affecting gene expression of lipid transfert protein (LTP), the major allergen of peach fruit. Acta Hortic 592:237–243Google Scholar
  17. Brenna O, Pompei C, Ortolani C, Pravettoni V, Farioli L, Pastorello EA (2000) Technological processes to decrease the allergenicity of peach juice and nectar. J Agric Food Chem 48:493–497PubMedGoogle Scholar
  18. Byrne DH (1990) Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J Hered 81:68–71Google Scholar
  19. Byrne DH (2002) Peach breeding trends: a world wide perspective. Acta Hortic 592:49–59Google Scholar
  20. Byrne DH, Nikolic AN, Burns EE (1991) Variability in sugars, acids, firmness, and colour characteristics of 12 peach genotypes. J Am Soc Hortic Sci 116:1004–1006Google Scholar
  21. Cantini C, Iezzoni AF, Lamboy WF, Bortizki M, Struss D (2001) DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. J Am Soc Hortic Sci 126:205–209Google Scholar
  22. Chaparro JX, Werner DJ, O'Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological, isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815Google Scholar
  23. Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99:65–72CrossRefGoogle Scholar
  24. Claverie M, Dirlewanger E, Cosson P, Bosselut N, Lecouls AC, Voisin R, Kleinhentz M, Lafargue B, Caboche M, Chalhoub B, Esmenjaud D (2004) Fine Mapping and Chromosome Landing at the Root-Knot Nematode Resistance Locus Ma from Myrobalan Plum Using a Large-Insert BAC DNA Library. Theor Appl Genet (in press)Google Scholar
  25. Connors CH (1920) Peach breeding — a summary of results. Proc Am Soc Hortic Sci 17:108–115Google Scholar
  26. Connors CH (1922) Inheritance of foliar glands of the peach. Proc Am Soc Hortic Sci 18:20–26Google Scholar
  27. Dabov S (1983) Inheritance of peach resistance to powdery mildew. III. Leaf resistance in F1 of J.H. Hale × nectarine Ferganensis 2. Genet Plant Breed 16:146–150Google Scholar
  28. Dennis FG (1996) A physiological comparison of seed and bud dormancy. In: Lang GA (ed) Plant dormancy. CAB International, WallingfordGoogle Scholar
  29. Dettori MT, Quarta R, Verde I (2001) A peach linkage map integrating RFLPs, SSRs, RAPDs and morphological markers. Genome 44:783–790CrossRefPubMedGoogle Scholar
  30. Dirlewanger E, Bodo C (1994) Molecular genetic mapping of peach. Euphytica 77:101–103Google Scholar
  31. Dirlewanger E, Pascal T, Zuger C, Kervella J (1996) Analysis of molecular markers associated with powdery mildew resistance genes in peach (Prunus persica (L.) Batsch) × Prunus davidiana hybrids. Theor Appl Genet 93:909–919Google Scholar
  32. Dirlewanger E, Pronier V, Parvery C, Rothan C, Guy A, Monet R (1998) Genetic linkage map of peach (Prunus persica (L.) Batsch) using morphological and molecular markers. Theor Appl Genet 97:888–895Google Scholar
  33. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L) Batsch). Theor Appl Genet 98:18–31CrossRefGoogle Scholar
  34. Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138CrossRefPubMedGoogle Scholar
  35. Dirlewanger E, Kleinhentz M, Claverie M, Lecouls AC, Bosselut N, Voisin R, Poessel JL, Faurobert M, Arús P, Gomez-Aparisi J, Xiloyannis C, Di Vito M, Esmenjaud D (2003a) Breeding for a new generation of Prunus rootstocks: an example of marker-assisted selection. Proceedings of the 1st international symposium on rootstock for deciduous fruit tree species, ISHS Fruit Section. Acta Hortic (in press)Google Scholar
  36. Dirlewanger E, Poizat C, Cosson P, Lafargue B, Kleinhentz M, Claverie M, Bosselut N, Voisin R, Esmenjaud D, Laigret F (2003b) Genetic linkage maps of myrobalan plum and of an almond-peach hybrid-location of root-knot nematode resistance genes. 7th international congress of plant molecular biology, ISPMB, Barcelona, 23–28 June 2003Google Scholar
  37. Downey SL, Iezzoni AF (2000) Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach, and sour cherry. J Am Soc Hortic Sci 125:76–80Google Scholar
  38. Esmenjaud D, Minot JC, Voisin R, Pinochet J, Salesses G (1994) Inter-and intraspecific resistance variability in Myrobalan plum, peach, and peach-almond rootstocks using 22 root-knot nematode populations. J Am Soc Hortic Sci 119:94–100Google Scholar
  39. Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R, Rothan C (2002a) Isolation and characterisation of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in regulating peach fruit acidity. Physiol Plant 114:259–270CrossRefPubMedGoogle Scholar
  40. Etienne C, Rothan C, Moing A, Plomion C, Bodénès C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002b) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159CrossRefPubMedGoogle Scholar
  41. Fideghelli C, Della Strada G, Grassi F, Morico G (1998) The peach industry in the world: present situation and trend. Acta Hortic 465:29–40Google Scholar
  42. Foolad MR, Arulsekar S, Becerra V, Bliss FA (1995) A genetic map of Prunus based on an interspecific cross between peach and almond. Theor Appl Genet 91:262–269Google Scholar
  43. Foulongne M, Pascal T, Arús P, Kervella J (2003a) The potential of Prunus davidiana for introgression into peach [Prunus persica (L.) Batsch] assessed by comparative mapping. Theor Appl Genet 107:227–238PubMedGoogle Scholar
  44. Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003b) QTLs for powdery mildew resistance in peach × Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50CrossRefGoogle Scholar
  45. Génard M, Bruchou C (1992) Multivariate analysis of within-tree factors accounting for the variation of peach fruit quality. Sci Hort 52:37–51CrossRefGoogle Scholar
  46. Georgi LL, Wang Y, Yvergniaux D, Ormsbee T, Iñigo M, Reighard G, Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:1151–1158CrossRefPubMedGoogle Scholar
  47. Hansche P (1988) Two genes that induce brachytic dwarfism in peach. Hortic Sci 23:604–606Google Scholar
  48. Hesse CO (1975) Peach. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue Univ Press, West Lafayette, Indiana, pp 325–326Google Scholar
  49. Hurtado MA, Romero C, Vilanova S, Abbott AG, Llácer G, Badenes ML (2002) Genetic linkage maps of two apricot cultivars (Prunus armaniaca L.), and mapping of PPV (sharka) resistance. Theor Appl Genet 105:182–191CrossRefPubMedGoogle Scholar
  50. Jáuregui B (1998) Localizacion de marcadores moleculares ligados a caracteres agronomicos en un cruzamiento interespecifico almendro × melocotonero. PhD Thesis. University of Barcelona, Spain.Google Scholar
  51. Jáuregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arús P (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102:1169–1176Google Scholar
  52. Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P (1998) Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Theor Appl Genet 97:1034–1041Google Scholar
  53. Joobeur T, Periam N, de Vicente MC, King GJ, Arús P (2000) Development of a second generation linkage map for almond using RAPD and SSR markers. Genome 43:649–655PubMedGoogle Scholar
  54. Lambert P, Hagen LS, Arús P, Audergon JM (2004) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond ‘Texas’ × peach ‘Earlygold’ reference map for Prunus. Theor Appl Genet 108:1120–1130CrossRefPubMedGoogle Scholar
  55. Lammerts WE (1945) The breeding of ornamental edible peaches for mild climates I. Inheritance of tree and flower characters. Am J Bot 30:707–711Google Scholar
  56. Lecouls AC, Salesses G, Minot JC, Voisin R, Bonnet A, Esmenjaud D (1997) Spectrum of the Ma genes for resistance to Meloidogyne spp. in Myrobalan plum. Theor Appl Genet 95:1325–1334CrossRefGoogle Scholar
  57. Lecouls AC, Rubio-Cabetas MJ, Minot JC, Voisin R, Bonnet A, Salesses G, Dirlewanger E, Esmenjaud D (1999) RAPD and SCAR markers linked to the Ma1 root-knot nematode resistance gene in Myrobalan plum (Prunus cerasifera Ehr.). Theor Appl Genet 99:328–335CrossRefGoogle Scholar
  58. Lecouls AC, Reighard GL, Abbott AG, Dirlewanger E (2002) Physical mapping and integration of QTL intervals involved in fruit quality on peach fruit variety and rootstock molecular maps. Proc 5th IS Peach Acta Hortic 592 (ISHS 2002):273–278Google Scholar
  59. Lecouls AC, Bergougnoux V, Rubio-Cabetas MJ, Bosselut N, Voisin R, Bonnet A, Salesses G, Dirlewanger E, Esmenjaud D (2004) Marker-assisted selection of Prunus rootstocks for the wide-spectrum root-knot nematode resistance conferred by the Ma gene from Myrobalan plum (Prunus cerasifera). Mol Breed 13:113–124CrossRefGoogle Scholar
  60. Le Dantec L, Chagné D, Pot D, Cantin O, Garnier-Géré P, Bedon F, Frigerio JM, Chaumeil P, Léger P, Garcia V, Laigret F, de Daruvar A, Plomion C (2004) Automated SNP Detection in Expressed Sequence Tags: Statistical Considerations and Application to Maritime Pine Sequences. Plant Mol Biol (in press)Google Scholar
  61. Lesley JW (1939) A genetic study of saucer fruit shape and other characters in the peach. Proc Am Soc Hortic Sci 38:218–222Google Scholar
  62. Lopes MS, Sefc KM, Laimer M, da Camara Machado A (2002) Identification of microsatellite loci in apricot. Mol Ecol Notes 2:24–26CrossRefGoogle Scholar
  63. Lu ZX, Sosinski B, Reighard GL, Baird WV, Abbott AG (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41:199–207CrossRefGoogle Scholar
  64. Massonié G, Monet R, Bastard Y, Grasselly C (1982) Résistance au puceron vert du pècher, Myzus persicae Sulzer (Homoptera aphididae) chez Prunus persica (L.) Batsch et d'autres espèces de Prunus. Agronomie 2:63–70Google Scholar
  65. Mehlenbacher SA, Scorza R (1986) Inheritance of growth habit in progenies of compact Redhaven peach. Hortscience 21:124–126Google Scholar
  66. Moing A, Svanella L, Rolin D, Gaudillere M, Gaudillere JP, Monet R (1998) Compositional changes during the fruit development of two peach cultivars differing in juice acidity. J Am Soc Hortic Sci 123:770–775Google Scholar
  67. Monet R (1967) A contribution to the genetics of peaches (in French). Ann Amelior Plant 17:5–11Google Scholar
  68. Monet R (1979) Genetic transmission of the ‘non-acid’ character. Incidence on selection for quality. Eucarpia symposium tree fruit breeding. INRA, Angers, pp 273–276Google Scholar
  69. Monet R, Guye A, Roy M, Dachary N (1996) Peach mendelian genetics: a short review of results. Agronomie 16:321–329Google Scholar
  70. Pangborn (1963) Relative taste intensities of selected sugars and organic acids. J Food Sci 28:726–733Google Scholar
  71. Pascal T, Kervella J, Pfeiffer F, Sauge MH, Esmenjaud D (1998) Evaluation of the interspecific progeny Prunus persica cv Summergrand × Prunus davidiana for disease resistance and some agronomic features. Acta Hortic 465:185–191Google Scholar
  72. Pastorello EA, Farioli J, Pravettoni V, Ortolani C, Ispano M, Monza M, Broglio C, Scibola E, Ansaloni R, Incorvaia C, Conti A (1999) The major allergen of peach (Prunus persica) is a lipid transfer protein. J Allergy Clin Immunol 103:520–526PubMedGoogle Scholar
  73. Quarta R, Dettori MT, Verde I, Gentile A, Broda Z (1998) Genetic analysis of agronomic traits and genetics linkage mapping in a BC1 peach population using RFLPs and RAPDs. Acta Hortic 465:51–59Google Scholar
  74. Quarta R, Dettori MT, Sartori A, Verde I (2000) Genetic linkage map and QTL analysis in peach. Acta Hortic 521:233–241Google Scholar
  75. Rajapakse S, Belthoff LE, He G, Estager AE, Scorza R, Verde I, Ballard RE, Baird WV, Callahan A, Monet R, Abbott AG (1995) Genetic linkage mapping in peach using morphological, RFLP and RAPD markers. Theor Appl Genet 91:964–971Google Scholar
  76. Ramming DW, Tanner O (1983) Nemared peach rootstock. HortScience 18:376Google Scholar
  77. Rodriguez J, Crespo JF, Lopez-Rubio A, de la Cruz Bertolo J, Ferrando-Vivas P, Vives R, da Roca P (2000) Clinical cross-reactivity among foods of the Rosaceae family. J Allergy Clin Immunol 106:183–189PubMedGoogle Scholar
  78. Rodriguez J, Sherman WB, Scorza R, Wisniewski M, Okie WR (1994) 'Evergreen’ peach, its inheritance and dormance behavior. J Am Soc Hortic Sci 119:789–792Google Scholar
  79. Rothan C, Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R (1999) Isolation of a cDNA encoding a metallothionein-like protein (Accession NoAJ243532) expressed during peach fruit development. Plant Physiol 121:311 (Electronic plant gene register)CrossRefPubMedGoogle Scholar
  80. Sánchez-Monge R, Lombardero M, Garcia-Sellé FJ, Barber D, Salcedo G (1999) Lipid-transfer proteins are relevant allergens in fruit allergy. J Allergy Clin Immunol 103:514–519PubMedGoogle Scholar
  81. Sauge MH, Kervella J, Pascal T (1998) Settling behavior and reproductive potential of the green peach aphid Myzus persicae on peach varieties and a related wild Prunus. Entomol Exp Appl 89:233–242CrossRefGoogle Scholar
  82. Scorza R, Mehlenbacher SA, Lightner GW (1985) Inbreeding and coancestry of freestone peach cultivars of the eastern United States and implications for peach germplasm improvement. J Am Soc Hortic Sci 110:547–552Google Scholar
  83. Scorza R, Melnicenco L, Dang P, Abbott AG (2002) Testing a microsatellite marker for selection of columnar growth habit in peach [Prunus persica (L.) Batsch]. Acta Hortic 592:285–289Google Scholar
  84. Scott DH, Cullinan FP (1942) The inheritance of wavy-leaf character in the peach. J Hered 33:293–295Google Scholar
  85. Scott DH, Weinberger JH (1944) Inheritance of pollen sterility in some peach varieties. Proc Am Soc Hort Sci 45:229–232Google Scholar
  86. Sharpe RH, Hesse CO, Lownsberry BF, Perry VG, Hansen CJ (1970) Breeding peaches for root knot nematode resistance. J Am Soc Hortic Sci 94:209–212Google Scholar
  87. Smykov VK, Ovcharenko GV, Perfilyeva ZN, Shoferistov EP (1982) Estimation of the peach hybrid resources by its mildew resistance against the infection background. Byull Gos Nikitsh Bot Sada 88:74–80Google Scholar
  88. Sosinski B, Sossey-Alaoui K, Rajapakse S, Glassmoyer K, Ballard R, Abbott A, Lu X, Baird WV, Reighard G, Tabb A, Scorza R (1998) Use of AFLP and RFLP markers to create a combined linkage map in peach (Prunus persica (L.) Batsch) for use in marker assisted selection. Acta Hortic 465:61–68Google Scholar
  89. Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 97:1034–1041Google Scholar
  90. Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520CrossRefPubMedGoogle Scholar
  91. Verde I, Quarta R, Cedrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hortic 592:291–297Google Scholar
  92. Vilanova S, Romero C, Abbott AG, Llácer G, Badenes ML (2003) An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility traits. Theor Appl Genet 107:239–247CrossRefPubMedGoogle Scholar
  93. Viruel MA, Messeguer R, de Vicente MC, Garcia-Mas J, Puigdomènech P, Vargas F, Arús P (1995) A linkage map with RFLP and isozyme markers for almond. Theor Appl Genet 91:964–971CrossRefGoogle Scholar
  94. Viruel MA, Madur D, Dirlewanger E, Pascal T, Kervella J (1998) Mapping quantitative trait loci controlling peach leaf curl resistance. Acta Hortic 465:79–88Google Scholar
  95. Wang D, Karle R, Brettin TS, Iezzoni AF (1998) Genetic linkage map in sour cherry using RFLP markers. Theor Appl Genet 97:1217–1224CrossRefGoogle Scholar
  96. Wang D, Karle R, Iezzoni AF (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100:535–544Google Scholar
  97. Wang Y, Garay L, Reighard GL, Geargi LL, Abbott AG, Scorza R (2002) Development of bacterial artificial chromosome contigs in the evergrowing gene region in peach. Acta Hortic 592:183–189Google Scholar
  98. Warburton ML, Becerra-Velasquez VL, Goffreda JC, Bliss FA (1996) Utility of RAPD markers in identifying genetic linkages to genes of economic interest in peach. Theor Appl Genet 93:920–925CrossRefGoogle Scholar
  99. Weinberger JH, Marth PC, Scott DH (1943) Inheritance study of root knot nematode resistance in certain peach varieties. Proc Am Soc Hortic Sci 42:321–325Google Scholar
  100. Werner DJ, Creller MA (1997) Genetic studies in peach: inheritance of sweet kernel and male sterility. J Am Soc Hortic Sci 122:215–217Google Scholar
  101. Werner DJ, Creller MA, Chaparro JX (1998) Inheritance of blood-flesh trait in peach. Hortic Sci 33:1243–1246Google Scholar
  102. Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51:271–278CrossRefGoogle Scholar
  103. Yamamoto T, Mochida K, Imai T, Shi Z, Ogiwara I, Hayashi T (2002) Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Mol Ecol Notes 2:298–301CrossRefGoogle Scholar
  104. Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 34:479–501Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • E. Dirlewanger
    • 1
  • P. Arús
    • 2
  1. 1.Unité de Recherches sur les Espèces Fruitières et la Vigne, INRAVillenave d'OrnonFrance
  2. 2.Laboratori CSIC-IRTA de Genètica Molecular VegetalDepartament de Genética VegetalCabrils (Barcelona)Spain

Personalised recommendations