Skip to main content

Fractal Modeling of Complex Subsurface Geological Structures

  • Chapter
Book cover Fractal Behaviour of the Earth System

Summary

The essential component of gravity modeling is an initial model with arbitrary shape having regular geometry. This regular geometry approximates causative body of irregular geometry. For best approximation of causative bodies using regular geometry one requires several polygons represented by many vertices, which are perturbed during global optimization to achieve best model that fits the anomaly. We have circumvented the choice of multi-face regular polygonal initial model by using Lp norm modified Voronoi tessellation. This tessellation scheme provides realistic irregular (fractal) geometry of the causative body using a few parameters known as Voronoi centers, which makes inversion algorithm faster as well as provides an irregular realistic final model for the causative body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold JF, Siegert (1942) A mechanical integrator for the computation of gravity anomalies. Geophysics 74: 354–366

    Google Scholar 

  • Bhattacharya BK, Navolio ME (1976) A fast Fourier transform method for rapid computation of gravity and magnetic anomalies due to arbitrary bodies, Geophys Prosp 20: 633–649

    Google Scholar 

  • Bott MHP (1960) The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins. GJRAS 3:63–67

    Google Scholar 

  • Carbato CE (1965) A least squares procedure for gravity interpretation. Geophysics 30:228–233

    Google Scholar 

  • Dimri VP (1992) Deconvolution and inverse theory. Elsevier Science Publishers, Amsterdam London New York Tokyo

    Google Scholar 

  • Dimri VP (2000) Fractal dimension analysis of soil for flow studies. In: Application of fractals in earth sciences, edited, V.P. Dimri, pp 189–193, A.A. Balkema, USA

    Google Scholar 

  • Dimri VP (2000) Crustal fractal magnetisation. In: Application of fractals in earth sciences, edited, V.P. Dimri, pp 89–95, A.A. Balkema, USA

    Google Scholar 

  • Fortune S (1987) A sweepline algorithm for Voronoi diagrams. Algorithmica 2:153–174

    Article  Google Scholar 

  • Ferguson JF, Felch RN, Aiken CLV, Oldow JS, Dockery H (1988) Models of the Bouguer gravity and geologic structure at Yucca Flat Navada. Geophysics 53: 231–244

    Article  Google Scholar 

  • Gregotski ME, Jensen OG, Akrani-Hamed J (1991) Fractal stochastic modeling of aeromagnetic data. Geophysics 56:1706–1715

    Article  Google Scholar 

  • Gupsi F (1992) Three-dimensional Fourier gravity inversion with arbitrary gravity contrast. Geophysics.57: 131–135

    Google Scholar 

  • Korvin G (1992) Fractal models in the earth sciences, Elsevier Science Publishers, Amsterdam London New York Tokyo

    Google Scholar 

  • Lee DT (1982) On k — nearest neighbours Voronoi diagrams in the plane, IEEE Transactions on Computers C-31: 478–487

    Google Scholar 

  • Li Y, Oldenburg DW (1997) Fast inversion of large scale magnetic data using wavelets. 67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 490–493

    Google Scholar 

  • Li Y, Oldenburg DW (1998) 3D inversion of gravity data. Geophysics 63: 109–119

    Google Scholar 

  • Mandelbrot BB (1983) The Fractal Geometry of Nature. WH Freeman & Company, San Francisco

    Google Scholar 

  • Maus S, Dimri VP (1994) Fractal properties of potential fields caused by fractal sources. Geophys Res Lett 21: 891–894.

    Article  Google Scholar 

  • Maus S, Dimri VP (1995) Potential field power spectrum inversion for scaling geology: J Geophys Res 100: 12605–12616

    Article  Google Scholar 

  • Maus S, Dimri VP (1996) Depth estimation from the scaling power spectrum of potential fields? Geophys J Int 124: 113–120

    Google Scholar 

  • Moharir PS, Maru VM, Srinivas S (1999) Lemniscates representation for inversion of gravity and magnetic data through nonlocal optimization. Proc Ind Acad Sci (Earth & Planet Sci) 108:223–232

    Google Scholar 

  • Negi JG, Garde SC (1969) Symmetric matrix method for gravity interpretation. Jour Geophys Res 74: 3804–3807

    Google Scholar 

  • Nettleton L (1940) Geophysical prospecting for oil. McGraw Hill Book Co.

    Google Scholar 

  • Nettleton LL (1942) Gravity and magnetic calculations. Geophysics 7:293–310

    Google Scholar 

  • Oldenburg DW (1974) The inversion and interpretation of gravity anomalies. Geophysics 39:526–536

    Article  Google Scholar 

  • Okabe A, Barry B, Sugihara K (1992) Spatial tessellations: Concepts and applications of Voronoi diagrams. John Wiley & Sons

    Google Scholar 

  • Parker RL (1973) The rapid computation of potential anomalies. Geophys J.R. Astr. Soc., 31: 447–455

    Google Scholar 

  • Pilkington, M., Todoeschuck, J.P.(1993) Fractal magnetization of continental crust. Geophys. Res. Lett., 20: 627–630

    Google Scholar 

  • Sergio E. Oliva, Claudia L. Ravazzoli (1997) Complex polynomials for the computation of 2D gravity anomalies. Geophys. Pros. 45: 809

    Google Scholar 

  • Talwani M, Worzel JL, Landisman M (1959) Rapid gravity computations for twodimensional bodies with application to the Mendocino submarine fracture zone. J. Geophys. Res. 64: 49–59

    Google Scholar 

  • Talwani M, Ewing M (1960) Rapid computation of gravitational attraction of three-dimensional bodies of arbitrary shape, Geophysics 25: 203–225

    Article  Google Scholar 

  • Talwani M, Heirtzler J.(1964) Computation of magnetic anomalies caused by 2-D structures of arbitrary shapes. In: Compt. Min. Ind. Part 1, Stanford Univ. Geo.Sci., 9

    Google Scholar 

  • Tanner, J.G., 1967, An automated method of gravity interpretation, Geophys. J. R. Astr. Soc. 13: 339–347

    Google Scholar 

  • Tikhonov AN (1963) Solution of incorrectly formulated problems and the regularizations method. Soviet Math. Doklady, 4:1035:1038

    Google Scholar 

  • Tipper J.C., 1990, A straight forward iterative algorithm for the planar Voronoi diagram, Information Process Letters 34:155–160

    Google Scholar 

  • Turcotte D., 1997, Fractals and Chaos in Geology and Geophysics, 2nd edition,: Cambridge University Press, Cambridge, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dimri, V.P., Srivastava, R.P. (2005). Fractal Modeling of Complex Subsurface Geological Structures. In: Dimri, V.P. (eds) Fractal Behaviour of the Earth System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26536-8_2

Download citation

Publish with us

Policies and ethics