Kriging of scale-invariant data: optimal parameterization of the autocovariance model

  • R. Sidler
  • K. Holliger
Conference paper


Correlation Length Ordinary Kriging Flicker Noise Autocovariance Function Kriging Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chilès J-P, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New YorkGoogle Scholar
  2. Deutsch CV (2001) Geostatistical reservoir modeling. Oxford University Press, OxfordGoogle Scholar
  3. Gelhar LW (1993) Stochastic subsurface hydrology. Prentice-Hall, Englewood CliffsGoogle Scholar
  4. Goff JA, Jennings JW (1999) Improvement of Fourier-based unconditional and conditional simulations for band-limited fractal (von Kármán) statistical models. Math Geol 31: 627–649CrossRefGoogle Scholar
  5. Goff JA, Jordan TH (1988) Stochastic modeling of seafloor morphology: inversion of sea beam data for second-order statistics. J Geophys Res 93: 13589–13608Google Scholar
  6. Goff JA, Holliger K, Levander A (1994) Modal fields: a new method for characterization of random seismic velocity heterogeneity. Geophys Res Lett 21: 493–496CrossRefGoogle Scholar
  7. Hardy HH, Beier RA (1994) Fractals in reservoir engineering. World Scientific, Singapore.Google Scholar
  8. Hergarten S (2002) Self-organized criticality in earth systems. Springer, BerlinGoogle Scholar
  9. Holliger K, Goff JA (2003) A generalized model for the 1/f-scaling nature of seismic velocity fluctuations. In: Goff JA, Holliger K (eds.) Heterogeneity in the crust and upper mantle — nature, scaling, and seismic properties. Kluwer Academic/Plenum Publishers, New York, 131–154Google Scholar
  10. Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, San DiegoGoogle Scholar
  11. Kelkar M, Perez G (2002) Applied geostatistics for reservoir characterization. Society of Petroleum Engineers, Richardson, TexasGoogle Scholar
  12. Kitanidis PK (1997) Introduction to geostatistics. Cambridge University Press, Cambridge.Google Scholar
  13. Lampe B, Holliger K (2003) Effects of fractal fluctuations in topographic relief, permittivity, and conductivity on ground-penetrating radar antenna radiation. Geophysics 68: 1934–1944Google Scholar
  14. Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New YorkGoogle Scholar
  15. Tatarski VL (1961) Wave propagation in a turbulent medium. McGraw-Hill, New YorkGoogle Scholar
  16. Turcotte DL (1997) Fractals and chaos in geology and geophysics. 2nd edition, Cambridge University Press, CambridgeGoogle Scholar
  17. von Kármán T (1948) Progress in the statistical theory of turbulence. Marit Res J, 7: 252–264Google Scholar
  18. West BJ, Shlesinger M (1990) The noise in natural phenomena. American Scientist 78: 40–45Google Scholar
  19. Western AW, Blöschl G (1999) On the spatial scaling of soil moisture. Hydrol J, 217: 203–224Google Scholar
  20. Wu R-S, Aki K (1985) The fractal nature of the inhomogeneities in the lithosphere evidence from seismic wave scattering. Pure Appl Geophys 123: 805–818.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • R. Sidler
    • 1
  • K. Holliger
    • 1
  1. 1.Institute of GeophysicsSwiss Federal Institute of Technology (ETH) ETH-HoenggerbergZurichSwitzerland

Personalised recommendations