Inferring the lateral subsurface correlation structure from georadar data: Methodological background and experimental evidence

  • B. Dafflon
  • J. Tronicke
  • K. Holliger
Conference paper


Correlation Length Correlation Structure Flicker Noise Shallow Subsurface Lateral Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beres M, Huggenberger P, Green AG, Horstmeyer H (1999) Using 2-and 3-dimensional georadar methods to characterize glaciofluvial architecture. Sed Geol 129: 1–24CrossRefGoogle Scholar
  2. Claerbout JF (1985) Imaging the earth’s interior. Blackwell, OxfordGoogle Scholar
  3. Davis JL, Annan AP (1989) Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophys Prospect 37: 531–551Google Scholar
  4. Gelhar LW (1993) Stochastic subsurface hydrology. Prentice-Hall, Englewood CliffsGoogle Scholar
  5. Goff JA, Jordan TH (1988) Stochastic modeling of seafloor morphology: inversion of sea beam data for second-order statistics. J Geophys Res 93:13589–13608Google Scholar
  6. Hardy HH, Beier RA (1994) Fractals in reservoir engineering. World Scientific, SingaporeGoogle Scholar
  7. Heinz J, Kleineidam S, Teutsch G, Aigner T (2003) Heterogeneity patterns of Quaternary glaciofluvial gravel bodies (SW-Germany): application to hydrology. Sediment Geol 158: 1–23CrossRefGoogle Scholar
  8. Huggenberger P (1993) Radar facies: recognition of facies patterns and heterogeneities within Pleistocene Rhine gravels, NE Switzerland. In: Best JL, Bristow CS (eds) Braided rivers, Geol Soc, Spec Publ 75: 163–176Google Scholar
  9. Kelkar M, Perez G (2002) Applied geostatistics for reservoir characterization. Society of Petroleum Engineers, RichardsonGoogle Scholar
  10. Neil A (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-Sci Rev 66: 261–330Google Scholar
  11. Oldenborger GA, Schincariol RA, Mansinha L (2003) Radar determination of the spatial structure of hydraulic conductivity. Ground Water 41: 24–32Google Scholar
  12. Rea J, Knight R (1998) Geostatistical analysis of ground-penetrating radar data: a means of describing spatial variation in the subsurface. Water Resour Res 34: 329–339CrossRefGoogle Scholar
  13. Ritzi RW, Jayne DF, Zahradnik AJ, Field AA, Fogg GE (1994) Geostatistical modeling of heterogeneity in glaciofluvial, buried-valley aquifers. Ground Water: 32, 666–674CrossRefGoogle Scholar
  14. Rubin Y (2003) Applied stochastic hydrology. Oxford University Press, Oxford.Google Scholar
  15. Sidler R, Holliger K (this volume) Kriging of scale-invariant data: optimal parameterization of the autocovariance modelGoogle Scholar
  16. von Kármán T (1948) Progress in the statistical theory of turbulence. J Marit Res 7: 252–264Google Scholar
  17. West BJ, Shlesinger M (1990) The noise in natural phenomena. Am Sci 78: 40–45Google Scholar
  18. Western AW, Blöschl G (1999) On the spatial scaling of soil moisture. J Hydrol 217: 203–224CrossRefGoogle Scholar
  19. Wharton RP, Hazen GA, Rau RN, Best DL (1980) Advancements in electromagnetic propagation logging: SPE 9267, American Institute of Mining, Metallurgical and Petroleum EngineersGoogle Scholar
  20. Yilmaz Ö (1988) Seismic data processing. Society of Exploration Geophysicists, Tulsa.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • B. Dafflon
    • 1
  • J. Tronicke
    • 1
  • K. Holliger
    • 1
  1. 1.Institute of Geophysics, Swiss Federal Institute of Technology (ETH) ETH-HoenggerbergZurichSwitzerland

Personalised recommendations