Modelling the spatial distribution of copper in the soils around a metal smelter in northwestern Switzerland

  • A. Papritz
  • C. Herzig
  • F. Borer
  • R. Bono
Conference paper


Conditional Simulation Universal Kriging Metal Smelter Indicator Kriging Mathematical Geology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldworth J, Cressie N (2003) Prediction of nonlinear spatial functionals. Journal of Statistical Planning and Inference 112: 3–41CrossRefGoogle Scholar
  2. Chan G, Wood ATA (1997) An algorithm for simulating stationary gaussian random fields. Journal of the Royal Statistical Society Series C 46: 171–181Google Scholar
  3. Chilès JP, Delfiner P (1999) Geostatistics: Modeling spatial uncertainty. Wiley, New YorkGoogle Scholar
  4. Cressie N (1993) Aggregation in geostatistical problems. In: Soares A (ed) Geostatistics Troia’ 92. Kluwer Academic Publishers, Dordrecht, 25–36Google Scholar
  5. Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics (with discussions). Journal of the Royal Statistical Society Series C 47: 299–350Google Scholar
  6. Dowd PA (1982) Lognormal kriging — the general case. Mathematical Geology 14: 475–499CrossRefGoogle Scholar
  7. Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New YorkGoogle Scholar
  8. Goovaerts P, Journel AG (1995) Integrating soil map information in modelling the spatial variation of continuous soil properties. European Journal of Soil Science 46: 397–414CrossRefGoogle Scholar
  9. Journel AG (1980) The lognormal approach to predicting local distributions of selective mining unit grades. Mathematical Geology 12: 285–303CrossRefGoogle Scholar
  10. Keller A, Jauslin M, Schulin R (1999) Bodendaten und Stofffluss-Analyse im Schwermetallbelastungsgebiet Dornach. Bericht, Amt für Umweltschutz, Volkswirtschaftsdepartement des Kantons SolothurnGoogle Scholar
  11. Kolbjørnsen O, Omre H (1997) Bayesian disjunctive kriging applied to prediction of reservoir volume. In: Baafi EY and Schofield NA (eds) Geostatistics Wollongong’ 96. Kluwer Academic Publishers, Dordrecht, 609–620Google Scholar
  12. Marcotte D, Groleau P (1997) A simple and robust lognormal estimator. Mathematical Geology 29: 993–1008CrossRefGoogle Scholar
  13. Moyeed RA, Papritz A (2002) An empirical comparison of kriging methods for nonlinear spatial point prediction. Mathematical Geology 34: 365–386CrossRefGoogle Scholar
  14. Oz B, Deutsch CV, Frykman P (2002) A Visualbasic program for histogram and variogram scaling. Computers and Geosciences 28: 21–31CrossRefGoogle Scholar
  15. Papritz A, Dubois JP (1999) Mapping heavy metals in soil by (non-)linear kriging: an empirical validation. In Gómez-Hernández J, Soares A, Froidevaux R (eds) GeoENV II Geostatistics for environmental applications. Kluwer Academic Publishers, Dordrecht, 429–440Google Scholar
  16. Rendu JM (1979) Normal and lognormal estimation. Mathematical Geology 11: 407–422CrossRefGoogle Scholar
  17. Wirz E, Winistörfer D (1987) Bericht über die Metallgehalte in Boden-und Vegetationsproben aus dem Raum Dornach. Bericht Kantonales Laboratorium, Solothurn.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A. Papritz
    • 1
  • C. Herzig
    • 1
  • F. Borer
    • 2
  • R. Bono
    • 3
  1. 1.ETH ZürichInstitut für terrestrische ÖkologieSchlieren
  2. 2.Amt für Umwelt des Kantons SolothurnSolothurn
  3. 3.Amt für Umweltschutz und Energie des Kantons Basel-LandschaftLiestal

Personalised recommendations