Solving the groundwater inverse problem by successive flux estimation

  • P. Pasquier
  • D. Marcotte
Conference paper


Direct Problem Head Data Reference Field Transmissivity Field Head Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bear J, Jacob M (1965) On the movement of water bodies injected into aquifers. Journal of Hydrogeology, vol. 3, 37–57Google Scholar
  2. Brochu Y (2002) Estimation directe des charges hydrauliques d’un aquifère par krigeage, Master’s thesis (in french), École Polytechnique de Montréal, p. 118Google Scholar
  3. Brochu Y, Marcotte D (2003) A simple approach to account for radial flow and boundary conditions when kriging hydraulic head fields for confined aquifers, Math. Geol., vol. 35, no.2, 111–136CrossRefGoogle Scholar
  4. Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information, Water Resources Research, vol. 22, no. 2, 199–210Google Scholar
  5. Chilès JP, Delfiner P (1999) Geostatistics: Modeling Spatial Uncertainty. Wiley, New YorkGoogle Scholar
  6. Chilès JP, Guilhen A (1984) Variogrammes et krigeages pour la gravimétrie et le magnétisme. Série Informatique Géologique, vol. 1, 455–46Google Scholar
  7. Comsol AB. (2004) Femlab 3.0 User and reference manual, Stockholm, SwedenGoogle Scholar
  8. Davis MW (1987) Production of conditional simulations via the LU triangular decomposition of the covariance matrix, Math Geol., vol.176, no. 3, 149–265Google Scholar
  9. Delhomme JP (1979) Kriging under boundary conditions, Presented at the American Geophysical Union fall meeting, San Francisco, December 1979Google Scholar
  10. Emsellem Y, de Marsily G, (1971) An automatic solution for the inverse problem, Water Resources Research, vol. 7, no. 5, 1264–1283Google Scholar
  11. Gòmez-Hernàndez JJ, Sahuquillo A, Capilla JE (1997) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data-I. Theory, Journal of Hydrology, vol. 203, no. 1-4, 162–174Google Scholar
  12. Guo X, Zhang C-M (2000) Hydraulic gradient comparison method to estimate aquifer hydraulic parameters under steady-state conditions. Ground Water, vol. 38, no. 6, 815–826CrossRefGoogle Scholar
  13. Marcotte D, Chouteau M (1993) Gravity data transformation by kriging. In Geostatistics Tròia 1992, Soares A (ed.), 249–269, vol. 1, Kluwer Academic, Dordrecht, The NetherlandsGoogle Scholar
  14. de Marsily G, Lavedan G, Boucher M, Fasanino G (1984) Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model, in Geostatistics for Natural Resources Characterization, Verly G, David M, Journel AG, Marechal A (eds.), 831–849, Reide D, Norwell, Mass.Google Scholar
  15. Ponzini G, Lozej A (1982) Identification of aquifer transmissivities: The comparison model method, Water Ressources Research. vol. 18, no. 3, 597–622Google Scholar
  16. Sagar B, Yakowitz S, Duckstein L (1975) A direct method for the identification of the parameters of dynamic nonhomogeneous aquifers, Water Resources Research, vol. 11, no. 4, 563–570CrossRefGoogle Scholar
  17. Tonkin MJ, Larson SP (2002) Kriging water levels with a regional-linear and point-logarithmic drift, Ground Water, vol. 33, no. 1, 185–193Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • P. Pasquier
    • 1
  • D. Marcotte
    • 1
  1. 1.Département des génies civil, géologique et des minesÉcole Polytechnique de MontréalMontréalCANADA

Personalised recommendations