Impact of the choice of the variogram model on flow and travel time predictors in radial flows

  • M. Riva
  • M. De Simoni
  • M. Willmann
Conference paper


Travel Time Hydraulic Head Radial Flow Water Resource Research Variogram Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballio F, Guadagnini A (2004) Convergence assessment of numerical Monte Carlo simulations in groundwater hydrology. Water Resources Research, (40)4, W04603, doi:10.1029/2003WR002876CrossRefGoogle Scholar
  2. Dagan G, Indelman P (1999) Reactive solute transport in flow between a recharging and a pumping well in a heterogeneous aquifer. Water Resources Research, 35(12): 3639–3647CrossRefGoogle Scholar
  3. Feyen L, Ribeiro Jr PJ, De Smedt F, Diggle PJ (2002) Bayesian methodology to stochastic capture zone determination: Conditioning on transmissivity measurements. Water Resources Research, 38(9), 1164, doi:10.1029/2001WR000950CrossRefGoogle Scholar
  4. Guadagnini A, Franzetti S (1999) Time-related Capture Zones for Contaminants in Randomly Heterogeneous Formations. Ground Water, 37(2): 253–260CrossRefGoogle Scholar
  5. Gómez-Hernández JJ, Journel AG (1993) Joint sequential simulation of multi-Gaussian field. In: Geostatitics Troia’92, vol 1. Ed Soares, 85–94Google Scholar
  6. Hendricks Franssen HJ, Stauffer F, Kinzelbach W (2002) Influence of uncertainty of mean transmisivity, transmissivty variogram and boundary condition on estimation of wll capture zones. 4th European Conference on Geostatistics for Environmental Applications, Geoenv2002, 223–234Google Scholar
  7. Neuman SP, Guadagnini A, Riva M (2004) Type-curve estimation of statistical heterogeneity, Water Resour. Res., 40, W04201, doi: 10. 1029 / 2003 WR 002 405CrossRefGoogle Scholar
  8. Riva M, Guadagnini A, Ballio F (1999) Time related capture zones for radial flow in two-dimensional randomly heterogeneous media Stochastic Environmental Research and Risk Assessment, 13(3): 217–230Google Scholar
  9. Riva M, Guadagnini A, Neuman SP, Franzetti S (2001) Radial flow in a bounded randomly heterogeneous aquifer. Transport in Porous Media, 45: 139–193CrossRefGoogle Scholar
  10. Riva M, Sanchez-Vila X, De Simoni M, Guadagnini A, Willmann M (2002) Effect of heterogeneity on aquifer reclamation time, 4th European Conference on Geostatistics for Environmental Applications, Geoenv2002, 259–270Google Scholar
  11. Salandin P, Rinaldo A (1989) The influence of the form of the log-conductivity covariance on non-fickian dispersion in random permeability fields, International Journal for Numerical Methods in Engineering, 27: 185–193CrossRefGoogle Scholar
  12. Sanchez-Vila X, Meier PM, Carrera J (1999) Pumping tests in heterogeneous aquifers: An analytical study of what can be obtained from their interpretation using Jacob’s method. Water Resources Research, 35(4): 943–952Google Scholar
  13. van Leeuwen M, Te Stroet CBM, Butler AP, Tompkins JA (2000) Stochastic determination of well capture zones conditioned on regular grids of transmissivity measurements. Water Resources Research, 36(4): 949–957Google Scholar
  14. Woodbury AD, Rubin Y (2000) A full-Bayesian approach to parameter inference from tracer travel time moments and investigation of scale effects at the Cape Cod experimental site. Water Resources Research 36(1): 159–171CrossRefGoogle Scholar
  15. Woodbury AD, Ulyrich TG (2000) A full-Bayesian approach to the groundwater inverse problem for steady state flow. Water Resources Research 36(8): 2081–2093.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. Riva
    • 1
  • M. De Simoni
    • 1
  • M. Willmann
    • 2
  1. 1.Dipartimento Ingegneria Idraulica, Ambientale, Infrastrutture Viarie, Rilevamento (DIIAR)Politecnico di MilanoMilanoItaly
  2. 2.Department of Geotechnical Engineering and GeosciencesTechnical University of CataloniaBarcelonaSpain

Personalised recommendations