Combining categorical and continuous information using Bayesian Maximum Entropy

  • P. Bogaert
  • M.-A. Wibrin


Random Field Categorical Information Prediction Location Geostatistical Method Soft Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bogaert P (2002) Spatial prediction of categorical variables: the Bayesian Maximum Entropy approach. Stoch. Env. Res. Risk A., 16(6): 425–448Google Scholar
  2. Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, New YorkGoogle Scholar
  3. Christakos G, Bogaert P, Serre ML (2002) Temporal GIS. Advanced Functions for Field-Based Applications. Springer-Verlag, New-YorkGoogle Scholar
  4. Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics. Journal of the Royal Statistical Society series C-Applied Statistics, 47: 299–326Google Scholar
  5. D’Or D, Bogaert P, Christakos G (2001) Application of the BME approach to soil texture mapping. Stoch. Env. Res. Risk A., 15(1): 87–100Google Scholar
  6. D’Or (2003) Spatial prediction of soil properties: the BME approach. Thesis dissertation. Université catholique de Louvain, BelgiqueGoogle Scholar
  7. Gray RM (1990). Entropy and Information Theory. Springer-Verlag, New YorkGoogle Scholar
  8. Goovaerts P (1997) Geostatistics for Natural Resources Evaluation. Oxford University Press, New YorkGoogle Scholar
  9. Jaynes ET (1982) On the Rational of Maximum-Entropy Methods. Proceedings of the IEEE, 70(9): 939–952CrossRefGoogle Scholar
  10. Journel AG (1983) Nonparametric estimation of spatial distributions. Mathematical Geology, 45: 445–468Google Scholar
  11. Stein A, Hoogerwerf M, Bouma J (1988) Use of Soil-Map Delineations to improve (Co)-Kriging of Point Data on Moisture Deficit. Geoderma, 43: 163–17CrossRefGoogle Scholar
  12. Venables WN, Ripley BD (1994) Modern applied statistics with S-Plus. Verlag, New YorkGoogle Scholar
  13. Wang F (1990) Fuzzy supervised classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 28: 194–201.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • P. Bogaert
    • 1
  • M.-A. Wibrin
    • 1
  1. 1.dept. of Environmental Sciences and Land Use Planning — Environmetry and GeomaticsUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations