Modeling density-dependent flow using hydraulic conductivity distributions obtained by means of non-stationary indicator simulation

  • K.-J. Röhlig
  • H. Fischer
  • B. Pöltl
Conference paper


Rock Salt Variogram Model Salt Dome Hydrogeological Unit Hydrogeological Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baltes B and Röhlig K-J (2004) Longterm safety of final repositories: German experiences concerning the rĉle of uncertainty and risk in assessments and regulations. PSAM 7 — Proceedings of the 7th International Conference on Probabilistic Safety Assessment and Management, 2004. Springer, LondonGoogle Scholar
  2. Bonano EJ and Thompson BGJ (1993) “Guest Editorial”, Reliability Engineering & System Safety. Special issue on Probabilistic Risk Assessment for Radioactive Waste, Vol 42 Nos 2-3, 103–109Google Scholar
  3. Cadelli N, Escalier des Orres P, Marivoet J, Martens, K-H, Prij, J (1996) Evaluation of elements responsible for the effective engaged dose rates associated with the final storage of radioactive waste: Everest project. EUR 17122 EN. EC, LuxembourgGoogle Scholar
  4. Delhomme JP (1978) Kriging in the hydrosciences. Adv. Water Res., 1, 251–266.CrossRefGoogle Scholar
  5. Deutsch CV and Journel AG (1992) GSLIB. Geostatistical Software Library and User’s Guide. Oxford University Press. New YorkGoogle Scholar
  6. Jaquet O, Schindler M, Voborny O, Vinard P (1998) Modelling of Groundwater Flow at Wellenberg Using Monte Carlo Simulations, Mat. Res. Soc. Symp. Proc., Vol. 506, 865–872.Google Scholar
  7. Jaquet O, Rivera A, Genter M, Fillion E (2001) Site du Gard: Héterogénéités, Simulations Géostatistiques et Modélisation Hydrodynamique, Cahiers de Géostatistique, Fascicule 7, FontainebleauGoogle Scholar
  8. Journel AG and Alabert FG (1988) Focusing on Spatial Connectivity of Extreme-Valued Attributes: Stochastic Indicator Models of Reservoir Heterogeneities. 63rd Annual Technical Conference and exhibition, Soc. of Pet. Eng., Richardson, Texas. SPE paper 18324Google Scholar
  9. König C (2002) SPRING®. Benutzerhandbuch Version 3.00. delta h Ingenieurgesellschaft mbH, BochumGoogle Scholar
  10. LaVenue Marsh A and RamaRao BS (1992) A Modelling Approach to Address Spatial Variability within the Culebra Dolomite Transmissivity Field, SAND92-7306, Sandia National Laboratories, Albuquerque.Google Scholar
  11. Ludwig R (1994) Projekt Gorleben. Hydrogeologische Grundlagen für Modellrechnungen. Kenntnisstand 1994. BGR-Archiv No. 112 002. BGR Hannover, unpublished reportGoogle Scholar
  12. Ludwig R and Kösters E (2002) Hydrogeologisches Modell Gorleben — Entwicklung bis zum paläohydrogeologischen Ansatz. Schriftenreihe der Deutschen Geologischen Gesellschaft, Heft 24, HannoverGoogle Scholar
  13. Marivoet J, Wemaere I, Escalier des Orres P, Baudoin P, Certes C, Levassor A, Prij J, Martens K-H, Röhlig, K-J (1997) The EVEREST project: sensitivity analysis of geological disposal systems. Reliability Engineering and System Safety 57, 79–90CrossRefGoogle Scholar
  14. Porter JD and Hartley LJ (1997) The Treatment of Uncertainty in Groundwater Flow and Solute Transport Modelling. Application of Indicator Kriging to Stratigraphic and Petrographic Data from the Gorleben Site. EUR 17829 EN, LuxembourgGoogle Scholar
  15. Röhlig K-J (1999) Geostatistical Analysis of the Gorleben Channel. In: Gómez-Hernández et al. (ed) GeoENV II — Geostatistics for Environmental Applications. Proceedings of the Second European Conference on Geostatistics for Environmental Applications held in Valencia, Spain, November 18-20, 1998. Kluwer Academic Publishers, Dordrecht Boston London,319–330Google Scholar
  16. Röhlig K-J and Pöltl B (2001) Uncertainty and Sensitivity Analyses for Contaminant Transport Models Based on Conditional Indicator Simulations. In: Monestiez P et al. (ed) GeoENV III—Geostatistics for Environmental Applications. Proceedings of the Third European Conference on Geostatistics for Environmental Applications held in Avignon, France, November 22-24, 2000. Kluwer Academic Publishers, Dordrecht Boston London, 251–26Google Scholar
  17. Schelkes K, Knoop R-M, Geißler N (1990) INTRAVAL PHASE II. Test Case: Saline Groundwater Movement in an Erosional Channel Crossing a Salt Dome (Part 1). BGR, HannoverGoogle Scholar
  18. Zimmerman DA et al. (1998) A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modelling advective transport by groundwater flow, Water Resour. Res., 34(6), 1373–1413CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • K.-J. Röhlig
    • 1
  • H. Fischer
    • 1
  • B. Pöltl
    • 1
  1. 1.Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbHKölnGermany

Personalised recommendations