Advertisement

Analysis and modelling of spatially and temporally varying phenological phases

  • D. Doktor
  • F.W. Badeck
  • F. Hattermann
  • J. Schaber
  • M. McAllister

Keywords

Digital Elevation Model Gaussian Mixture Model Observation Station Ordinary Kriging Elevation Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumgartner AG, Kleinlein G, Waldmann G (1956) Forstlich-phänologische Beobachtungen und Experimente am Großen Falkenstein. Veröffentlichungen aus dem Meteorologischen Institut der Forstlichen Forschungsanstalt München: 290–303.Google Scholar
  2. Benecke U (1972) Wachstum, CO2-Gaswechsel und Pigmentgehalt einiger Baumarten nach Ausbringung in verschiedenen Höhenlagen. Angew. Bot. 46: 117–135.Google Scholar
  3. Dieckmann M (1996) Relationship between phenology of perennial herbs and meteorological data in deciduous forests of Sweden. Can. J. Bot. 74: 528–537Google Scholar
  4. Deutsch CV, Journel AG (1998) GSLIB Geostatistical Software Library and User’s Guide. Oxford University Press, New YorkGoogle Scholar
  5. Goovaersts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology 228: 113–129Google Scholar
  6. Gilardi NS, Bengio S, Kanevski N (2002). Conditional Gaussian Mixture Models for Environmental Risk MappingGoogle Scholar
  7. Hudson G, Wackernagel H (1993) Mapping temperature using kriging with external drift: theory and an example from Scotland. International Journal of Climatology 14: 77–91Google Scholar
  8. Isaaks EH, Srivastava RM (1989) Applied Geostatistics. Oxford University Press, New YorkGoogle Scholar
  9. Kramer K (1996) Phenology and growth of european trees in relation to climate change. Institute for forestry and nature research. Wageningen, LandbouwuniversiteitteGoogle Scholar
  10. McLachland GJ, Peel D (2000) Finite Mixture Models. Wiley, New YorkGoogle Scholar
  11. Mendl M (1995) Klima. In: Liedtke H, Marcinek J (ed) Physische Geographie Deutschlands, Perthes, GothaGoogle Scholar
  12. Oberarzbacher P (1977) Beiträge zur physiologischen Analyse des Höhenzuwachses von verschiedenen Fichtenklonen entlang eines Höhenprofiles im Wipptal (Tirol) und in Klimakammern. Innsbruck, Universität InnsbruckGoogle Scholar
  13. Poland WB, Shachter RD (1994) Three Approaches to Probability Model Selection. in Uncertainty in Artificial IntelligenceGoogle Scholar
  14. Schaber J, Badeck FW (2002) Evaluation of methods for the combination of phenological time series and outlier detection. Tree Physiology 22(14): 973–982Google Scholar
  15. Schmithüsen J, Meynen E (1962) Handbuch der naturräumlichen Gliederung Deutschlands. Bundesanstalt für Landeskunde und Raumforschung, Bad GodesbergGoogle Scholar
  16. Schnelle F (1955) Pflanzen-Phänologie. Geest & Portig, LeipzigGoogle Scholar
  17. Schnelle F (1973). Die Vegetationszeit von Waldbäumen in deutschen Mittelgebirgen. Erlanger Geographische Arbeiten 32: 2–34Google Scholar
  18. Sparks TH (2002) Observed changes in seasons: an overview. International Journal of Climatology 22(14): 1715–1725CrossRefGoogle Scholar
  19. Tentoni S, Astolfi P, Pasquale De A, Zonta L (2004) A. Birthweight by gestational age in preterm babies according to a Gaussian Mixture model. International Journal of Obstetrics and Gynaecology 111: 31–37Google Scholar
  20. Wackernagel H (1998). Multivariate Geostatistics. Springer, New York, Berlin, HeidelbergGoogle Scholar
  21. Worral J (1983) Temperature-bud-burst relationships in amabilis and subalpine fir provenance tests replicated at different elevations. Silvae Genet. 32: 203–209Google Scholar
  22. Worral J (1993). Temperature effects on bud burst and leaf fall in subalpine larch. Journal of sustainable forestry 1: 1–18Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • D. Doktor
    • 1
    • 2
  • F.W. Badeck
    • 2
  • F. Hattermann
    • 2
  • J. Schaber
    • 2
  • M. McAllister
    • 1
  1. 1.Department of Environmental Science and TechnologyImperial College, LondonLondonUK
  2. 2.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations