Advertisement

Change of support: an inter-disciplinary challenge

  • C. A. Gotway Crawford
  • L. J. Young

Keywords

Geographic Information System Spatial Unit Point Support Modifiable Areal Unit Problem Support Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong M (1999) Basic Linear Geostatistics. Springer-Verlag New YorkGoogle Scholar
  2. Bierkens MFP, Finke PA, De Willigen P (2000) Upscaling and Downscaling Methods for Environmental Research. Kluwer DordrechtGoogle Scholar
  3. Bracken I., Martin D (1989) The generation of spatial population distributions from census centroid data. Environment and Planning A 21: 537–543Google Scholar
  4. Brillinger DR (1990) Spatial-temporal modeling of spatially aggregate birth data. Survey Methodology 16: 255–269Google Scholar
  5. Chilès JP, Delfiner P (1999) Geostatistics: Modeling Spatial Uncertainty. John Wiley & Sons, New YorkGoogle Scholar
  6. Chou KC, Willsky AS, Nikoukhah R (1994) Multiscale systems, Kalman filters, and Riccati equations. IEEE Transactions on Automatic Control, 39: 479–492Google Scholar
  7. Cressie N (1993) Statistics for Spatial Data. John Wiley & Sons, New YorkGoogle Scholar
  8. Cressie N (1993b) Aggregation in geostatistical problems. In Soares, A (ed.) Geostatistics Troia’ 92, Kluwer Academic Publishers, Dordrecht, 25–35Google Scholar
  9. Deutsch CV, Journel AG (1992) GSLIB: Geostatistical Software Library and User’s Guide. Oxford University Press, New York.Google Scholar
  10. Flowerdew R and Green M (1992) Developments in areal interpolating methods and GIS. Annals of Regional Science, 26: 67–78CrossRefGoogle Scholar
  11. Gelfand AE, Zhu L, Carlin BP (2001) On the change of support problem for spatiotemporal data. Biostatistics, 2: 31–45CrossRefGoogle Scholar
  12. Goovaerts P (1997) Geostatistics for Natural Resources Evaluation. Oxford University Press, New YorkGoogle Scholar
  13. Gotway CA and Rutherford BM (1994) Stochastic simulation for imaging spatial uncertainty: comparison and evaluation of available algorithms. In Armstrong, M and Dowd, PA (eds). Geostatistical Simulations, Kluwer: Dordrecht, 1–21Google Scholar
  14. Gotway CA, Young LJ (2002) Combining incompatible spatial data. Journal of the American Statistical Association, 97: 632–648CrossRefGoogle Scholar
  15. Gotway CA, Young LJ (2004) A geostatistical approach to linking geographically-aggregated data from different sources. Technical report # 2004-012, Department of Statistics, University of FloridaGoogle Scholar
  16. Huang H-C, Cressie N (2001) Multiscale graphical modeling in space: Applications to command and control. In Moore, M. (ed.) Spatial statistics. Methodological Aspects and Some Applications, vol. 159 of Lecture notes in Statistics, Springer Verlag, New YorkGoogle Scholar
  17. Huang H-C, Cressie N, Gabrosek J (2002) Fast resolution-consistent spatial prediction of global processses from satellite data. Journal of Computational and Graphical Statistics, 11:1–26CrossRefGoogle Scholar
  18. Journel AG, Huijbregts CJ (1978) Mining Geostatistics. Academic Press, LondonGoogle Scholar
  19. Kelsall J, Wakefield J (2002) Modeling spatial variation in disease risk: A geostatistical approach. Journal of the American Statistical Association, 97: 692–701CrossRefGoogle Scholar
  20. Matheron G (1963) Principles of geostatistics. Economic Geology, 58: 1246–1266CrossRefGoogle Scholar
  21. Matheron G (1984a) Isofactorial models and change of support. In Verly, G. et al. (eds.) Geostatistics for Natural Resources Characterization, Reidel, Dordrecht, 449–467Google Scholar
  22. Matheron G (1984b) The selectivity of the distributions and the “second principle of geostatistics.” In Verly, G. et al. (eds.) Geostatistics for Natural Resources Characterization, Reidel, Dordrecht, 449–467Google Scholar
  23. Mockus A (1998) Estimating dependencies from spatial averages. Journal of Computational and Graphical Statistics, 7: 501–513Google Scholar
  24. Mugglin AS, Carlin BP (1998) Hierarchical modeling in geographic information systems: Population interpolation over incompatible zones. Journal of Agricultural, Biological, and Environmental Statistics, 3: 117–130Google Scholar
  25. Müller HG, Stadtmüller U, Tabnak F (1997) Spatial smoothing of geographically aggregated data, with application to the construction of incidence maps. Journal of the American Statistical Association, 92: 61–71Google Scholar
  26. Olea RA (ed.) (1991) Geostatistical Glossary and Multilingual Dictionary. Oxford University Press, New YorkGoogle Scholar
  27. Openshaw S, Taylor P (1979) A million or so correlation coefficients. In Wrigley, N. (ed.) Statistical Methods in the Spatial Sciences, Pion, London, 127–144Google Scholar
  28. Rivoirard J (1994) Introduction to disjunctive kriging and non-linear geostatistics. Clarendon Press, OxfordGoogle Scholar
  29. Tobler W (1979) Smooth pycnophylactic interpolation for geographical regions (with discussion). Journal of the American Statistical Association, 74: 519–536Google Scholar
  30. Wikle CK, Milliff RF, Nychka D, Berliner LM (2001) Spatio-temporal hierarchical Bayesian modeling: Tropical ocean surface winds. Journal of American Statistical Association, 96: 382–397Google Scholar
  31. Wong DWS (1996) Aggregation effects in geo-referenced data. In Griffiths, D (ed.) Advanced Spatial Statistics, CRC Press, Boca Raton, Florida, 83–106Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • C. A. Gotway Crawford
    • 1
  • L. J. Young
    • 2
  1. 1.Centers for Disease Control and PreventionAtlantaUSA
  2. 2.Department of StatisticsUniversity of FloridaGainesvilleUSA

Personalised recommendations