Anthropogenic Organic Contaminants Incorporated into the Non-Extractable Particulate Matter of Riverine Sediments from the Teltow Canal (Berlin)

  • J. Schwarzbauer
  • M. Ricking
  • B. Gieren
  • R. Keller
  • R. Littke


Anthropogenic activities induce significant alterations of the macromolecular organic matter (MOM) in riverine systems mainly by emission of pollutants and their subsequent incorporation into geopolymers (bound residues). We have characterized the non-extractable residues of highly polluted riverine sediments (Spree River, Teltow Canal, Germany) in order to investigate the occurrence, alteration and distribution of several organic xenobiotics in situ, e.g. plasticizers, pesticides, and metabolites brominated and chlorinated aromatics, fragrances, technical additives and nitro compounds. Therefore this study intended a comprehensive characterization of riverine MOM combining different analytical techniques (pyrolytic analyses and chemical degradation techniques), in order to provide information concerning the incorporation mechanism and the mode of binding of a variety of organic pollutants with different chemical properties.


Humic Substance Humic Acid Riverine Sediment Organic Xenobiotic Anthropogenic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asperger A, Engewald W, Fabian G (1999) Analytical characterization of natural waxes employing pyrolysis-gas chromatography-mass-spectrometry. J Anal Appl Pyrolysis 50:103–115CrossRefGoogle Scholar
  2. Barriuso E, Houot S (1996) Rapid mineralization of the s-trazine ring of atrazine in soils in relation to soil management. Soil Biol Biochem 28:1341–1348CrossRefGoogle Scholar
  3. Boul HL, Garnham MLG, Hucker D, Baird D, Alslable J (1994) Influence of agricultural practices on the levels of DDT and its residues in soil. Environ Sci Technol 28:1397–1402Google Scholar
  4. Buffle J, Leppard GG (1995) Characterization of aquatic colloids and macromolecules: 1. Structure and behavior of colloidal material. Environ Sci Technol 29:2169–2175Google Scholar
  5. Bulterman AJ, van Loon WMGM, Ghijsen RT, Brinkmann UAT, Huitema IM, de Groot B (1997) Highly selective determination of macromolecular chlorolignosulfonic acids in river and drinking water using Curiepoint pyrolysis-gas chromatography-tandem mass spectrometry. Environ Sci Technol 31:1946–1952CrossRefGoogle Scholar
  6. Burns IG, Hayes MHB, Stacey M (1973) Spectroscopic studies on the mechanisms of adsorption of paraquat by humic acid and model compounds. Pestic Sci 4:201–209Google Scholar
  7. Capriel P, Haisch A, Khan U (1985) Distribution and nature of bound (nonextractable) residues of atrazine in a mineral soil nine years after the herbicide application. J Agric Food Chem 33:587–589CrossRefGoogle Scholar
  8. Chin YP, Gschwend PM (1992) Partitioning of polycyclic aromatic hydrocarbons to marine porewater organic colloids. Environ Sci Technol 26:1621–1626CrossRefGoogle Scholar
  9. Dahlman O, Mörck R, Ljungquist P, Reimann A, Johansson C, Boren H, Grimvall A (1993) Chlorinated structural elements in high molecular weight organic matter from unpolluted waters and bleachedkraft mill effluents. Environ Sci Technol 27:1616–1620CrossRefGoogle Scholar
  10. Engel MH, Macko SA (1993) Organic geochemistry — principles and applications. Plenum, New YorkGoogle Scholar
  11. Fabbri D, Trombini C, Vassura I (1998a) Analysis of polystyrene in polluted sediments by pyrolysisgas chromatography-mass spectrometry. J Chromatogr Sci 36:600–604Google Scholar
  12. Fabbri D, Mongardi M, Mintanari L, Galletti GC, Chiavari G, Scotti R (1998b) Comparison between CP/MAS 13C-NMR and pyrolysis-GC/MS in the structural characterization of humins and humic acids of soil and sediments. Fresenius J Anal Chem 362:299–306CrossRefGoogle Scholar
  13. Falandysz J (1998) Polychlorinated naphthalenes: an environmental update. J Environ Pollut 101:77–90CrossRefGoogle Scholar
  14. Franke S, Schwarzbauer J, Francke W (1998) Arylesters of alkylsulfonic acids in sediments. Part 3 of organic compounds as contaminants of the Elbe River and its tributaries. Fresenius J Anla Chem 353:580–588CrossRefGoogle Scholar
  15. Grasset L, Ambles A (1998) Structure of humin and humic acid from an acid soil as revealed by phase transfer catalyzed hydrolysis. Org Geochem 29:881–891CrossRefGoogle Scholar
  16. Guthrie EA, Bortiatynsky JM, van Heemst JD, Richamn JE, Hardy KS, Kovach EM, Hatcher PG (1999) Determination of (13C)pyrene sequestration in sediment microcosms using flash-pyrolysis-GC-MS and 13C-NMR. Environ Sci Technol 33:119–125CrossRefGoogle Scholar
  17. Hatcher PG, Bortiatynsky JM, Minard RD, Dec J, Bolag J (1993) Use of high resolution 13C-NMR to examine the enzymatic covalent binding of 13C-labelled 2,4-dichlorphenol to humic substances. Environ Sci Technol 27:2098–2103CrossRefGoogle Scholar
  18. Herbert BE, Bertsch PM, Novak JM (1993) Pyrene sorption by water-soluble organic Carbon. Environ Sci Technol 27:398–403CrossRefGoogle Scholar
  19. Horsfield B, Disko U, Leistner F (1989) The microscale simulation of maturation: outline of a new technique and its potential applications. Geologische Rundschau 78:361–374CrossRefGoogle Scholar
  20. Houot S, Benoit P, Charnay MP, Barriuso E (1997) Experimental techniques to study the fate of organic pollutants in soils in relation to their interactions with soil organic constituents. Analusis Magazine 25:9–19Google Scholar
  21. Hsu TS, Bartha R (1976) Hydrolysable and nonhydrolysable 3,4-dichloroaniline-humus complexes and their respective rates of biodegradation. J Agric Food Sci 24:118–222CrossRefGoogle Scholar
  22. Huber SA, Scheunert I, Dörfler U, Frimmel FH (1992) Zum Einfluss des gelösten organischen Kohlenstoffs (DOC) auf das Mobilitätsverhalten einiger Pestizide. Acta Hydrochim Hydrobiol 20:74–81Google Scholar
  23. Hyötyläinen J, Knuutinen J, Malkavaara P, Siltala J (1998a) Pyrolysis-GC-MS and CuO-Oxidation-HPLC in the characterization of HMMs from sediments and surface waters downstream of a pulp mill. Chemosphere 36:291–314Google Scholar
  24. Hyötyläinen J, Knuutinen J, Malkavaara P (1998b) Transport of high molecular mass lignin material in the receiving water system of a mechanical pulp mill. Chemosphere 36:577–587CrossRefGoogle Scholar
  25. Jensen-Korte U, Anderson C, Spitteller M (1987) Photodegradation of pesticides in the presence of humic substances. Sci Total Environ 62:335–340CrossRefPubMedGoogle Scholar
  26. Johnson WP, Amy GL (1995) Facilitated transport and enhanced desorption of polycyclic aromatic hydrocarbons by natural organic matter in aquifer sediments. Environ Sci Technol 29:807–817CrossRefGoogle Scholar
  27. Kan AT, Fu G, Hunter MA, Tomson MB (1997) Irreversible adsorption of naphthalene of naphthalene and tetrachlorobiphenyl to lula and surrogate sediments. Environ Sci Technol 31:2176–2185CrossRefGoogle Scholar
  28. Kaufman DD, Still GG, Paulson GD, Bandal SK (eds) (1976) Bound and conjugated pesticide residues. Amer Chem Soc Symp Ser 29Google Scholar
  29. Khan SU (1982) Bound pesticide residues in soil and plants. Residue Reviews 84:1–25PubMedGoogle Scholar
  30. Klaus U, Oesterreich T, Volk M, Spiteller M (1998) Interaction of aquatic dissolved organic matter (DOM) with amitrole: The nature of bound residues. Acta Hydrochim Hydrobiol 26:311–317CrossRefGoogle Scholar
  31. Kögel-Knabner I (2000) Analytical approaches for characterizing soil organic matter. Org Geochem 31:609–626CrossRefGoogle Scholar
  32. Li GC, Felbeck GT (1972) A study of the mechanism of atrazine adsorption by humic acid from muck soil. Soil Sci 113:430–433Google Scholar
  33. Lichtfouse E (1997) Soil, a sponge for pollutants. Analusis 25:M16–M23Google Scholar
  34. Liechtenstein EP (1980) Bound residues in soils and transfer of soil residues in crops. Residue Reviews 76:147–155Google Scholar
  35. Liechtenstein EP, Katan J, Anderegg BN (1977) Binding of “persistent” and “nonpersistent” 14C-labelled insecticides in an agricultural soil. J Agric Food Chem 25:43–47CrossRefGoogle Scholar
  36. Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31:3341–3347CrossRefGoogle Scholar
  37. McCarthy JF, Zachara JM (1989) Subsurface transport of contaminants: mobile colloids in the subsurface environment may alter the transport of contaminants. Environ Sci Technol 23:496–502Google Scholar
  38. Michaelis W, Richnow HH, Seifert R (1995) Chemically bound chlorinated aromatics in humic substances. Naturwissenschaften 82:139–142Google Scholar
  39. Miikki V, Hänninen K, Knuutinen J, Hyötyläinen J (1999) Pyrolysis of humic acids from digested and composted sewage sludge. Chemosphere 38:247–253CrossRefPubMedGoogle Scholar
  40. Mongenot T, Derenne S, Largeau C, Tribovillard NP, Lallier-Verges E, Dessort D, Connan J (1999) Spectroscopic, kinetic and pyrolytic studies of kerogen from the dark parallel laminae facies of the sulphur-rich Orbangnoux deposit (Upper Kimmeridgian, Jura). Org Geochem 30:39–56CrossRefGoogle Scholar
  41. Murphy EM, Zachara JM, Smith SC (1990) Influence of mineral-bound humic substances on the sorption of hydrophobic organic compunds. Environ Sci Technol 24:1507–1516CrossRefGoogle Scholar
  42. Nanny MA (1999) Deuterium NMR characterization of non-covalent interactions between monoaromatic compounds and fulvic acids. Org Geochem 30:901–909CrossRefGoogle Scholar
  43. Northcott GL, Jones KC (2000) Experimental approaches and analytical techniques for determining organic compounds bound residues in soil and sediment. Environ Pollut 108:19–43CrossRefPubMedGoogle Scholar
  44. Oesterreich T, Klaus U, Volk M, Neidhart B, Spiteller M (1999) Environmental fate of amitrole: influence of dissolved organic matter. Chemosphere 38:379–392CrossRefPubMedGoogle Scholar
  45. Palm H, Lammi R (1995) Fate of pulp mill organochlorines in the Gulf of Bothnia sediments. Environ Sci Technol 29:1722–1727Google Scholar
  46. Parris GE (1980) Covalent binding of aromatic amines to humate. 1. Reactions with carbonyls and quinones. Environ Sci Technol 14:1099–1106CrossRefGoogle Scholar
  47. Perdue EM, Wolfe NL (1982) Modification of pollutant hydrolysis kinetics in the presence of humic substances. Environ Sci Technol 16:847–852CrossRefGoogle Scholar
  48. Piccolo A, Celano G, De Simone C (1992) Interactions of atrazine with humic substances of different origins and their hydrolysed products. Sci Total Environ 117/118:403–412CrossRefGoogle Scholar
  49. Pignatello JJ, Xing B (1996) Mechnanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30:1–11CrossRefGoogle Scholar
  50. Requejo AG, Brown J, Boehm PD (1985) Thermal degradation products of non-volatile organic matter as indicators of anthropogenic inputs to estuarine and coastal sediments. In: Sigleo AC, Hattori A (ed) Marine and estuarine geochemistry. Lewis Publishers, Chelsea (Michigan), pp 81–96Google Scholar
  51. Richnow HH, Seifert R, Hefter J, Kästner M, Mahro B, Michaelis W (1994) Metabolites of xenobiotica and mineral oil constituents linked to macromolecular matter in polluted environments. Advances in organic geochemistry 1993, Org Geochem 22:671–681Google Scholar
  52. Richnow HH, Eschenbach A, Mahro B, Seifert R, Wehrung P, Albrecht P, Michaelis W (1998) The use of 13C-labelled polycyclic aromatic hydrocarbons for the analysis of their transformation in soils. Chemosphere 36:2211–2244CrossRefPubMedGoogle Scholar
  53. Ricking M, Schwarzbauer J, Franke S (2003) Molecular markers of anthropogenic activity in sediments of the Havel and Spree Rivers (Germany). Wat Res 37:2607–2617CrossRefGoogle Scholar
  54. Robertson BK, Alexander M (1998) Sequestration of DDT and dieldrin in soil: disappearance of acute toxicity but not the compounds. Environ Toxicol Chem 17:1034–1038CrossRefGoogle Scholar
  55. Safe SH, Gaido K (1998) Phytoestrogens and anthropogenic estrogenic compounds. Environ Toxicol Chem 17:119–126CrossRefGoogle Scholar
  56. Santos EBH, Duarte AC (1998) The influence of pulp and paper mill effluents on the composition of the humic fraction of aquatic organic matter. Water Res 32:597–608CrossRefGoogle Scholar
  57. Schlautmann MA, Morgan JJ (1993) Binding of fluorescent hydrophobic organic probe by dissolved humic substances and organically-coated aluminium oxide surfaces. Environ Sci Technol 27:2523–2532CrossRefGoogle Scholar
  58. Schulten HR, Leinweber P (1996) Characterisation of humic and soil particles by analytical pyrolysis and computer modelling. J Anal Appl Pyrolysis 38:1–53CrossRefGoogle Scholar
  59. Schwarzbauer J, Ricking M, Franke S, Franke W (2001) Halogenated organic compounds in sediments of the Havel and Spree Rivers (Germany). Part 5 of organic compounds as contaminants of the Elbe River and its tributaries. Environ Sci Technol 35:4015–4025CrossRefPubMedGoogle Scholar
  60. Senesi N (1992) Binding mechanisms of pesticides to soil humic substances. Sci Total Environ 123/124: 63–76CrossRefGoogle Scholar
  61. Senesi N, Testini C, Miano TM (1987) Interaction mechanism between HAs of different origin and nature and electron-donor herbicides — a comparative IR and electron-spin-resonance study. Org Geochem 11:25–30CrossRefGoogle Scholar
  62. Stankiewicz BA, van Bergen PF, Smith MB, Carter JF, Briggs DEG, Evershed RP (1998) Comparison of the analytical performance of filament and curie-point pyrolysis devices. J Anal Appl Pyrolysis 45:133–151CrossRefGoogle Scholar
  63. Steinberg CEW, Sturm A, Kelbel J, Kyu Lee S, Hertjorn N, Freitag D, Kettrup AA (1992) Changes of acute toxicity of organic chemicals to Daphnia magna in the presence of dissolved humic material (DHM). Acta Hydrochim Hydrobiol 20:326–332Google Scholar
  64. Tissot BP, Welte DH (1984) Petroleum formation and occurence. Springer-Verlag, BerlinGoogle Scholar
  65. Weber WJ, Lebouef EJ, Young TM, Huang W (2001) Contaminant interactions with geosorbent organic matter: insights drawn from polymer sciences. Water Res 35:853–868CrossRefPubMedGoogle Scholar
  66. Wheeler WB, Stratton GD, Twilley RR, Ou LT, Carlson DA, Davidson JM (1979) Trifluralin degradation and binding in soil. J Agric Food Chem 27:702–706CrossRefGoogle Scholar
  67. Ziechmann W (1972) Über die Elekronen-Donator und Acceptor-Eigenschaften von Huminstoffen. Geoderma 8:111–113CrossRefGoogle Scholar
  68. Zwiener C, Kumke MU, Abbt-Braun G, Frimmel FH (1999) Absorbed and bound residues in fulvic acid fractions of a contaminated groundwater — isolation, chromatographic and spectroscopic characterization. Acta Hydrochim Hydrobiol 27:208–213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. Schwarzbauer
  • M. Ricking
  • B. Gieren
  • R. Keller
  • R. Littke

There are no affiliations available

Personalised recommendations