Advertisement

Molekulare Ursachen von Anomalien der Nieren und Harnwege bei Neugeborenen

  • Jörg Dötsch
  • Christian Plank
  • Wolfgang Rascher
Part of the Molekulare Medizin book series (MOLMED)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.2.5 Literatur

  1. Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, Levi-Acobas F et al (1997) Clustering of mutations responsible for branchio-oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1. Hum Mol Genet 13:2247–2255CrossRefGoogle Scholar
  2. Anderson N, Clautice-Engle T, Allan R, Abbott G, Wells JE (1995) Detection of obstructive uropathy in the fetus: predictive value of sonographic measurements of renal pelvic diameter at various gestational ages. Am J Roentgenol 164:719–723Google Scholar
  3. Beltcheva O, Martin P, Lenkkeri U, Tryggvason K (2001) Mutation spectrum in the nephrin gene (NPHS1) in congenital nephrotic syndrome. Hum Mutat 17:368–373CrossRefPubMedGoogle Scholar
  4. Bergmann C, Senderek J, Sedlacek B, Pegiazoglou I, Puglia P, Eggermann T, Rudnik-Schoenborn S et al (2003) Spectrum of mutations in the gene for autosomal recessive polycystic kidney disease (ARPKD/PKHD1). J Am Soc Nephrol 14:76–89CrossRefPubMedGoogle Scholar
  5. Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, Beekmann F et al (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310–314PubMedCrossRefGoogle Scholar
  6. Bolk S, Puffenberger EG, Hudson J, Morton DH, Chakravarti A (1999) Elevated frequency and allelic heterogeneity of congenital nephrotic syndrome, Finnish type, in the old order Mennonites. Am J Hum Genet 65:1785–1790CrossRefPubMedGoogle Scholar
  7. Bosniak MA, Ambos MA (1975) Polycystic kidney disease. Semin Roentgenol 10:133–143PubMedCrossRefGoogle Scholar
  8. Burnett AL, Calvin DC, Chamness SL, Liu JX, Nelson RJ, Klein SL, Dawson VL et al (1997) Urinary bladder-urethral sphincter dysfunction in mice with targeted disruption of neuronal nitric oxide synthase models idiopathic voiding disorders in humans. Nat Med 3:571–574CrossRefPubMedGoogle Scholar
  9. Carmona F, Martinez-Roman S, Mortera C, Puerto B, Cararach V, Iglesias X (1993) Efficacy and safety of indomethacin therapy for polyhydramnios. Eur J Obstet Gynecol Reprod Biol 52:175–180PubMedCrossRefGoogle Scholar
  10. Chen H, Lun Y, Ovchinnikov D, Kokubo H, Oberg KC, Pepicelli CV, Gan L et al (1998) Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat Genet 19:51–55PubMedCrossRefGoogle Scholar
  11. Coffman TM (2002) Another cystic mystery solved. Nat Genet 30:247–248CrossRefPubMedGoogle Scholar
  12. Colquhoun-Kerr JS, Gu WX, Jameson JL, Withers S, Bode HH (1999) X-linked Kallmann syndrome and renal agenesis occurring together and independently in a large Australian family. Am J Med Genet 83:23–27CrossRefPubMedGoogle Scholar
  13. Coppes MJ, Huff V, Pelletier J (1993) Denys-Drash syndrome: relating a clinical disorder to genetic alterations in the tumor suppressor gene WT1. J Pediatr 123:673–678PubMedCrossRefGoogle Scholar
  14. Davis AP, Witte DP, Hsieh-Li HM, Potter SS, Capecchi MR (1995) Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375:791–795PubMedCrossRefGoogle Scholar
  15. Dehbi M, Pelletier J (1996) PAX8-mediated activation of the WT 1 tumor suppressor gene. EMBO J 15:4297–4306PubMedGoogle Scholar
  16. Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P (1990) Pax2, a new murine paired box-containing gene and its expression in the developing excretory system. Development 109:787–795PubMedGoogle Scholar
  17. Dreyer SD, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, Johnson RL et al (1998) Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet 19:47–50PubMedCrossRefGoogle Scholar
  18. Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9:2795–2807PubMedCrossRefGoogle Scholar
  19. Duke V, Quinton R, Gordon I, Bouloux PM, Woolf AS (1998) Proteinuria, hypertension and chronic renal failure in X-linked Kallmann’s syndrome, a defined genetic cause of solitary functioning kidney. Nephrol Dial Transplant 13:1998–2003PubMedCrossRefGoogle Scholar
  20. Eccles MR, Wallis LJ, Fidler AE, Spurr NK, Goodfellow PJ, Reeve AE (1992) Expression of the PAX2 gene in human fetal kidney and Wilms’ tumor. Cell Growth Differ 3:279–289PubMedGoogle Scholar
  21. Ehrich JH, Rizzoli G, Brunner FP, Fassbinder W, Geerlings W, Mallick NP, Raine AE et al (1992) Renal replacement therapy for end-stage renal failure before 2 years of age. Nephrol Dial Transplant 7:1171–1177PubMedGoogle Scholar
  22. Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ (2001) Barttin is a Cl Channel beta-subunit crucial for renal Cl reabsorption and inner ear K+ secretion. Nature 414:558–561PubMedCrossRefGoogle Scholar
  23. Feather SA, Malcolm S, Woolf AS, Wright V, Blaydon D, Reid CJ, Flinter FA (2000) Primary, nonsyndromic vesicoureteric reflux and its nephropathy is genetically heterogeneous, with a locus on chromosome 1. Am J Hum Genet 66:1420–1425CrossRefPubMedGoogle Scholar
  24. Ford B, Rupps R, Lirenman D, Van Allen MI, Farquharson D, Lyons C, Friedman JM (2001) Renal-coloboma syndrome: prenatal detection and clinical spectrum in a large family. Am J Med Genet 99:137–141CrossRefPubMedGoogle Scholar
  25. Franco B, Guioli S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, Carrozzo R et al (1991) A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 10353:529–536CrossRefGoogle Scholar
  26. Glassberg KI, Stephens FD, Lebowitz RL, Braren V, Duckett JW, Jacobs EC, King LR et al (1987) Renal dysgenesis and cystic disease of the kidney: a report of the Committee on Terminology, Nomenclature and Classification, Section on Urology, American Academy of Pediatrics. J Urol 138:1085–1092PubMedGoogle Scholar
  27. Grahame-Smith HN, Ward PS, Jones RD (1988) Finnish type congenital nephrotic syndrome in twins: presentation with pyloric stenosis. J R Soc Med 81:358PubMedGoogle Scholar
  28. Grobstein C (1967) Mechanisms of organogenetic tissue interaction. Natl Cancer Inst Monogr 26:279–299PubMedGoogle Scholar
  29. Groenen PM, Garcia E, Thoelen R, Aly M, Schoenmakers EF, Devriendt K, Fryns JP et al (1996) Isolation of cosmids corresponding to the chromosome breakpoints of a de novo autosomal translocation, t(6;19)(p21;q 13.1), in a patient with multicystic renal dysplasia. Cytogenet Cell Genet 75:210–215PubMedCrossRefGoogle Scholar
  30. Groenen PM, Vanderlinden G, Devriendt K, Fryns JP, Van de Ven WJ (1998) Rearrangement of the human CDC5L gene by a t(6;19)(p21;q 13.1) in a patient with multicystic renal dysplasia. Genomics 49:218–229PubMedCrossRefGoogle Scholar
  31. Hartner A, Dötsch J (2002) Lessons in congenital and acquired renal disease from alpha8 integrin mutant mice. Pediatr Nephrol 17:882–888CrossRefPubMedGoogle Scholar
  32. Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E (1996) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of winged helix transcription factor BF-2. Genes Dev 10:1467–1478PubMedCrossRefGoogle Scholar
  33. Hinchliffe SA, Chan YF, Jones H, Chan N, Kreczy A, van Velzen D (1992) Renal hypoplasia and postnatally acquired cortical loss in children with vesicoureteral reflux. Pediatr Nephrol 6:439–444CrossRefPubMedGoogle Scholar
  34. Hiraoka M, Taniguchi T, Nakai H, Kino M, Okada Y, Tanizawa A, Tsukahara H et al (2001) No evidence for AT2R gene derangement in human urinary tract anomalies. Kidney Int 59:1244–1249CrossRefPubMedGoogle Scholar
  35. Hohenfellner K, Hunley TE, Yerkes E, Habermehl P, Hohenfellner R, Kon V (1999) Angiotensin II, type 2 receptor in the development of vesico-ureteric reflux. BJU Int 83:318–322CrossRefPubMedGoogle Scholar
  36. International Collaborative Study Group for Bartter-like Syndromes (1997) Mutations in the gene encoding the inwardly-rectifying renal potassium Channel, ROMK, cause the antenatal variant of Bartter syndrome: evidence for genetic heterogeneity Hum Mol Genet 6:17–26CrossRefGoogle Scholar
  37. Izquierdo L, Porteous M, Paramo PG, Connor JM (1992) Evidence for genetic heterogeneity in hereditary hydronephrosis caused by pelvi-ureteric junction obstruction, with one locus assigned to chromosome 6p. Hum Genet 89:557–560CrossRefPubMedGoogle Scholar
  38. Jakob M, Jakob HJ, Barteeczko K (2000) Embryologie des Urogenitalsystems. In: Wullich B, Zang K (Hrsg) Genetik von Krankheiten des Urogenitalsystems. Springer, Berlin Heidelberg New York, Tokio, S 20–55Google Scholar
  39. Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V et al (1998) Positionally cloned gene for a novel glomerular protein — nephrin — is mutated in congenital nephrotic syndrome. Mol Cell 1:575–582CrossRefPubMedGoogle Scholar
  40. Kobata R, Tsukahara H, Takeuchi M, Hori C, Hiraoka M, Uchida T, Kotsuji F et al (1997) Early detection of prune belly syndrome in utero by ultrasonography. Acta Paediatr Jpn 39:705–709PubMedGoogle Scholar
  41. Kohlhase J, Wischermann A, Reichenbach H, Froster U, Engel W (1998) Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet 18:81–83CrossRefPubMedGoogle Scholar
  42. Konrad M, Leonhardt A, Hensen P, Seyberth HW, Kockerling A (1999) Prenatal and postnatal management of hyperprostaglandin E syndrome after genetic diagnosis from amniocytes. Pediatrics 103:678–683CrossRefPubMedGoogle Scholar
  43. Konrad M, Vollmer M, Lemmink HH, van den Heuvel LP, Jeck N, Vargas-Poussou R, Lakings A (2000) Mutations in the Chloride Channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol 11:1449–1459PubMedGoogle Scholar
  44. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691CrossRefPubMedGoogle Scholar
  45. Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K, Jones RC, Jaenisch R (1996) Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122:3537–3547PubMedGoogle Scholar
  46. Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8:1875–1887PubMedCrossRefGoogle Scholar
  47. Littlewood Evans A, Müller U (2000) Stereocilia defects in the sensory hair cells of the inner ear in mice deficient in integrin alpha8betal. Nat Genet 24:424–428PubMedCrossRefGoogle Scholar
  48. Liu HY, Dhülon HK, Yeung CK, Diamond DA, Duffy PG, Ransley PG (1994) Clinical outcome and management of prenatally diagnosed primary megaureters. J Urol 152:614–617PubMedGoogle Scholar
  49. Liu L, Done SC, Khoshnoodi J, Bertorello A, Wartiovaara J, Berggren PO, Tryggvason K (2001) Defective nephrin trafficking caused by missense mutations in the NPHS1 gene: insight into the mechanisms of congenital nephrotic syndrome. Hum Mol Genet 10:2637–2644PubMedCrossRefGoogle Scholar
  50. Mahan JD, Mauer SM, Sibley RK, Vernier RL (1984) Congenital nephrotic syndrome: evolution of medical management and results of renal transplantation. J Pediatr 105:549–557PubMedCrossRefGoogle Scholar
  51. McTaggart SJ, Algar E, Chow CW, Powell HR, Jones CL (2001) Clinical spectrum of Denys-Drash and Frasier syndrome. Pediatr Nephrol 16:35–39CrossRefGoogle Scholar
  52. Mendelsohn C, Lohnes D, Decimo D, Lufkin T, LeMeur M, Chambon P, Mark M (1994) Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120:2749–2771PubMedGoogle Scholar
  53. Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S (1997) Defects of urogenital development in mice lacking Emx2. Development 124:1653–1664PubMedGoogle Scholar
  54. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM et al (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342PubMedCrossRefGoogle Scholar
  55. Morham SG, Langenbach R, Loftin CD, Tiano HF, Vouloumanos N, Jennette JC, Mahler JF et al (1995) Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 83:473–482CrossRefPubMedGoogle Scholar
  56. Mücke J, Kunze J (2000) Anomalien des Urogenitalsystems im Rahmen multipler Fehlbildungen. In: Wullich B, Zang K (Hrsg) Genetik von Krankheiten des Urogenitalsystems. Springer, Berlin Heidelberg New York Tokio, S 110–145Google Scholar
  57. Müller U, Brändli AW (1999) Cell adhesion molecules and extracellular-matrix constituents in kidney development and disease. J Cell Sci 112:3855–3867PubMedGoogle Scholar
  58. Müller U, Wang D, Denda S, Meneses JJ, Pedersen RA, Reichardt LF (1997) Integrin alpha8betal is eritieally important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell 88:603–613PubMedCrossRefGoogle Scholar
  59. Natoli TA, Liu J, Eremina V, Hodgens K, Li C, Hamano Y, Mündel P et al (2002) A mutant form of the Wilms’ tumor suppressor gene WT1 observed in Denys-Drash Syndrome interferes with glomerular capillary development. J Am Soc Nephrol 13:2058–2067CrossRefPubMedGoogle Scholar
  60. Niaudet P (2001) Congenital nephrotic syndrome: commentary. Pediatr Nephrol 16:190–192PubMedCrossRefGoogle Scholar
  61. Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, Yoshida H et al (1999) Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 3:1–10CrossRefPubMedGoogle Scholar
  62. Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, Gilbert DJ et al (2001) Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128:3105–3115PubMedGoogle Scholar
  63. Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP (1995) The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat Genet 10:400–406CrossRefPubMedGoogle Scholar
  64. Norio R, Rapola J (1989) Congenital and infantile nephrotic syndromes. Prog Clin Biol Res 305:179–192PubMedGoogle Scholar
  65. Onuchic LF, Furu L, Nagasawa Y, Hou X, Eggermann T, Ren Z, Bergmann C et al (2002) PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexintranscription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet 70:1305–1317CrossRefPubMedGoogle Scholar
  66. Parsa CF, Goldberg MF, Hunter DG (2002) Papillorenal („renal coloboma“) syndrome. Am J Ophthalmol 134:300–301CrossRefPubMedGoogle Scholar
  67. Patrakka J, Martin P, Salonen R, Kestila M, Ruotsalainen V, Mannikko M, Ryynanen M et al (2002) Proteinuria and prenatal diagnosis of congenital nephrosis in fetal carriers of nephrin gene mutations. Lancet 359:1575–1577CrossRefPubMedGoogle Scholar
  68. Perantoni AO, Dove LF, Karavanova I (1995) Basic fibroblast growth factor can mediate the early inductive events in renal development. Proc Natl Acad Sci USA 92:4696–4700PubMedCrossRefGoogle Scholar
  69. Peters M, Jeck N, Reinalter S, Leonhardt A, Tönshoff B, Klaus G, Konrad M et al (2002) Clinical presentation of genetically defined patients with hypokalemic salt-losing tubulopathies. Am J Med 112:183–190CrossRefPubMedGoogle Scholar
  70. Qian F, Watnick TJ, Onuchic LF, Germino GG (1996) The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87:979–987CrossRefPubMedGoogle Scholar
  71. Qiao J, Uzzo R, Obara-Ishihara T, Degenstein L, Fuchs E, Herzlinger D (1999) FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development 126:547–554PubMedGoogle Scholar
  72. Ransley PG, Risdon RA, Godley ML (1984) High pressure sterile vesicoureteral reflux and renal scarring: an experimental study in the pig and minipig. Contrib Nephrol 39:320–343PubMedGoogle Scholar
  73. Rascher W (2002) Tubulopathien mit Störungen der Wasser-, Natrium und Kaliumhomöostase. In: Schärer K, Mehls O (Hrsg) Pädiatrische Nephrologie. Springer, Berlin Heidelberg New York Tokio, S 123–128Google Scholar
  74. Rascher W, Rösch W (2003) Congenital anomalies of the urinary tract. In: Davison et al (eds) Oxford textbook of clinical nephrology, 3rd ed. Oxford University Press (in press)Google Scholar
  75. Regina S, Lucas R, Miraglia SM, Zaladek Gil F, Machado Coimbra T (2001) Intrauterine food restriction as a determinant of nephrosclerosis. Am J Kidney Dis 37:467–476PubMedCrossRefGoogle Scholar
  76. Roodhooft AM, Birnholz JC, Holmes LB (1984) Familial nature of congenital absence and severe dysgenesis of both kidneys. N Engl J Med 310:1341–1345PubMedCrossRefGoogle Scholar
  77. Rothman KJ, Moore LL, Singer MR, Nguyen US, Mannino S, Milunsky A (1995) Teratogenicity of high vitamin A intake. N Engl J Med 333:1369–1373CrossRefPubMedGoogle Scholar
  78. Roy S, Dillon MJ, Trompeter RS, Barratt TM (1997) Autosomal recessive polycystic kidney disease: long-term outcome of neonatal survivors. Pediatr Nephrol 11:302–306PubMedCrossRefGoogle Scholar
  79. Rugarli EI, Ballabio A (1993) Kallmann syndrome. From genetics to neurobiology. JAMA 270:2713–2716CrossRefPubMedGoogle Scholar
  80. Ruotsalainen V, Ljungberg P, Wartiovaara J, Lenkkeri U, Kestila M, Jalanko H, Holmberg C et al (1999) Nephrin is specifieally located at the slit diaphragm of glomerular podocytes. Proc Natl Acad Sci USA 96:7962–7967CrossRefPubMedGoogle Scholar
  81. Sadler T W (1998) Medizinische Embryologie. Die normale menschliche Entwicklung und ihre Fehlbildungen. Langman’s medizinische Embryologie, 9. Aufl. Thieme, Stuttgart, S 277–293Google Scholar
  82. Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73PubMedCrossRefGoogle Scholar
  83. Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont ME, Sullivan MJ, Dobyns WB et al (1995) Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 9:358–364CrossRefPubMedGoogle Scholar
  84. Schärer K (2002 a) Nephrotisches Syndrom. In: Schärer K, Mehls O (Hrsg) Pädiatrische Nephrologie. Springer, Berlin Heidelberg New York Tokio, S 123–128Google Scholar
  85. Schärer K (2002 b) Fehlbildungssyndrome mit Nierenbeteiligung. In: Schärer K, Mehls O (Hrsg) Pädiatrische Nephrologie. Springer, Berlin Heidelberg New York Tokio, S 155–164Google Scholar
  86. Scheinman SJ, Guay-Woodford LM, Thakker RV, Warnock DG (1999) Genetic disorders of renal electrolyte transport. N Engl J Med 340:1177–1187CrossRefPubMedGoogle Scholar
  87. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383CrossRefPubMedGoogle Scholar
  88. Schumacher V, Schärer K, Wühl E, Altrogge H, Bonzel KE, Guschmann M, Neuhaus TJ (1998) Spectrum of early onset nephrotic syndrome associated with WT1 missense mutations. Kidney Int 53:1594–1600CrossRefPubMedGoogle Scholar
  89. Scott JE, Swallow V, Coulthard MG, Lambert HJ, Lee RE (1997) Screening of newborn babies for familial ureteric reflux. Lancet 350:396–400PubMedCrossRefGoogle Scholar
  90. Seyberth HW, Rascher W, Schweer H, Kühl PG, Mehls O, Schärer K (1985) Congenital hypokalemia with hypercalciuria in preterm infants: a hyperprostaglandinuric tubular syndrome different from Bartter syndrome. J Pediatr 107:694–701PubMedCrossRefGoogle Scholar
  91. Shawlot W, Behringer RR (1995) Requirement for Lim1 in head-organizer function. Nature 374:425–430CrossRefPubMedGoogle Scholar
  92. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP (1996 a) Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet 13:183–188CrossRefPubMedGoogle Scholar
  93. Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA et al (1996 b) Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ Channel, ROMK. Nat Genet 14:152–156CrossRefPubMedGoogle Scholar
  94. Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S et al (1997) Mutations in the Chloride Channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet 17:171–178CrossRefPubMedGoogle Scholar
  95. Snyder HM (1987) The duplex system, ectopic ureter, and ureterocele. In: Holliday MA, Barratt TM, Vernier RL (eds) Pediatric Nephrology, 2nd ed. Williams & Wilkins, Baltimore, pp 681–690Google Scholar
  96. Stanton BR, Perkins AS, Tessarollo L, Sassoon DA, Parada LF (1992) Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev 6:2235–2247PubMedCrossRefGoogle Scholar
  97. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683CrossRefPubMedGoogle Scholar
  98. The European Polycystic Kidney Disease Consortium (1994) The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 77:881–894CrossRefGoogle Scholar
  99. The International Polycystic Kidney Disease Consortium (1995) Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. Cell 81:289–298Google Scholar
  100. Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D, LaMantia C et al (1995) Targeted disruption of mouse EGF receptor: Effect of genetic background on mutant phenotype. Science 269:230–234PubMedCrossRefGoogle Scholar
  101. Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax2 controls multiple Steps of urogenital development. Development 121:4057–4065PubMedGoogle Scholar
  102. Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H, Fogo A et al (1998) Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 101:755–760PubMedCrossRefGoogle Scholar
  103. Tufro-McReddie A, Romano LM, Harris JM, Ferder L, Gomez RA (1995) Angiotensin II regulates nephrogenesis and renal vascular development. Am J Physiol 269:F110–115PubMedGoogle Scholar
  104. Vargas-Poussou R, Feldmann D, Vollmer M, Konrad M, Kelly L, van den Heuvel LP, Tebourbi L (1998) Novel molecular variants of the Na-K-2Cl cotransporter gene are responsible for antenatal Bartter syndrome. Am J Hum Genet 62:1332–1340CrossRefPubMedGoogle Scholar
  105. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75:229–240CrossRefPubMedGoogle Scholar
  106. Waldegger S, Jeck N, Barth P, Peters M, Vitzthum H, Wolf K, Kurtz A et al (2002) Barttin increases surface expression and changes current properties of ClC-K channels. Pflugers Arch 444:411–418CrossRefPubMedGoogle Scholar
  107. Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, Kubly V (2002) The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 30:259–269CrossRefPubMedGoogle Scholar
  108. Weaver RG, Cashwell LF, Lorentz W, Whiteman D, Geisinger KR, Ball M (1988) Optic nerve coloboma associated with renal disease. Am J Med Genet 29:597–605CrossRefPubMedGoogle Scholar
  109. Winyard PJ, Risdon RA, Sams VR, Dressler GR, Woolf AS (1996) The PAX2 transcription factor is expressed in cystic and hyperproliferative dysplastic epithelia in human kidney malformations. J Clin Invest 98:451–459PubMedCrossRefGoogle Scholar
  110. Woolf A (2001) Genes, urinary tract development, and human disease. In: Gearhardt JP, Rink RC, Mouriquand PD (eds) Pediatric urology. Saunders, Philadelphia, pp 225–236Google Scholar
  111. Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999) Eyal-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23:113–117PubMedCrossRefGoogle Scholar
  112. Yoneda A, Cascio S, Green A, Barton D, Puri P (2002) Angiotensin II type 2 receptor gene is not responsible for familial vesicoureteral reflux. J Urol 168:1138–1141PubMedCrossRefGoogle Scholar
  113. Zenteno JC, Mendez JP, Maya-Nunez G, Ulloa-Aguirre A, Kofman-Alfaro S (1999) Renal abnormalities in patients with Kallmann syndrome. BJU Int 83:383–386CrossRefPubMedGoogle Scholar
  114. Zerres K (2000) Polyzystische Nierenerkrankungen. In: Wullich B, Zang KD (Hrsg) Genetik von Krankheiten des Urogenitaltraktes. Springer, Berlin Heidelberg New York Tokio, S 242–256Google Scholar
  115. Zerres K, Schärer K (2002) Zystische Nierenerkrankungen. In: Schärer K, Mehls O (Hrsg) Pädiatrische Nephrologie. Springer, Berlin Heidelberg New York Tokio, S 95–101Google Scholar
  116. Zerres K, Becker J, Mucher G, Rudnik-Schöneborn S (1997) Autosomal recessive polycystic kidney disease. Contrib Nephrol 122:10–16PubMedCrossRefGoogle Scholar
  117. Zerres K, Mucher G, Becker J, Steinkamm C, Rudnik-Schöneborn S, Heikkila P, Rapola J et al (1998) Prenatal diagnosis of autosomal recessive polycystic kidney disease (ARPKD): molecular genetics, clinical experience, and fetal morphology. Am J Med Genet 76:137–144CrossRefPubMedGoogle Scholar
  118. Zerres K, Rudnik-Schöneborn S, Deget F, Holtkamp U, Brodehl J, Geisert J, Schärer K (1996) Autosomal recessive polycystic kidney disease in 115 children: clinical presentation, course and influence of gender. Arbeitsgemeinschaft für pädiatrische Nephrologie. Acta Paediatr 85:437–445PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jörg Dötsch
    • 1
  • Christian Plank
    • 2
  • Wolfgang Rascher
    • 2
  1. 1.Universitätsklinik für Kinder und JugendlicheFriedrich-Alexander-UniversitätErlangen
  2. 2.Friedrich-Alexander-Universität Klinik für Kinder und JugendlicheErlangen

Personalised recommendations