Molekulare Grundlagen von Hypoxie und Asphyxie

  • Johann Gross
Part of the Molekulare Medizin book series (MOLMED)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.2.7 Literatur

  1. Adelman DM, Gertsenstein M, Nagy A, Simon MC, Maltepe E (2000) Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev 14:3191–3203CrossRefPubMedGoogle Scholar
  2. Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1:1024–1028CrossRefPubMedGoogle Scholar
  3. An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM (1998) Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature 392:405–408PubMedGoogle Scholar
  4. Aplin JD (2000) Hypoxia and human placental development. J Clin Invest 105:559–560PubMedGoogle Scholar
  5. Araki W, Yuasa K, Takeda S, Takeda K, Shirotani K, Takahashi K, Tabira T (2001) Pro-apoptotic effect of presenilin 2 (PS2) overexpression is associated with down-regulation of Bcl-2 in cultured neurons. J Neurochem 79:1161–1168CrossRefPubMedGoogle Scholar
  6. Berger R, Garnier Y (2000) Perinatal brain injury. J Perinat Med 28:261–285CrossRefPubMedGoogle Scholar
  7. Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR (2000) Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 48:285–296CrossRefPubMedGoogle Scholar
  8. Berkenbosch JW, Baribeau J, Perreault T (2000) Decreased synthesis and vasodilatation to nitric oxide in piglets with hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 278:L276–L283PubMedGoogle Scholar
  9. Bernaudin M, Tang Y, Reilly M, Petit E, Sharp FR (2002) Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. J Biol Chem 277:39728–39738CrossRefPubMedGoogle Scholar
  10. Bjelke B, Andersson K, Ogren SO, Bolme P (1991) Asphyctic lesion: proliferation of tyrosine hydroxylase-immunoreactive nerve cell bodies in the rat substantia nigra and functional changes in dopamine neurotransmission. Brain Res 543:1–9CrossRefPubMedGoogle Scholar
  11. Blumberg FC, Wolf K, Sandner P, Lorenz C, Riegger GA, Pfeifer M (2001) The NO donor molsidomine reduces endothelin-1 gene expression in chronic hypoxic rat lungs. Am J Physiol Lung Cell Mol Physiol 280:L258–L263PubMedGoogle Scholar
  12. Boado RJ, Pardridge WM (2002) Glucose deprivation and hypoxia increase the expression of the GLUT1 glucose transporter via a specific mRNA cis-acting regulatory element. J Neurochem 80:552–554CrossRefPubMedGoogle Scholar
  13. Boast K, Binley K, Iqball S, Price T, Spearman H, Kingsman S, Kingsman A et al (1999) Characterization of physiologically regulated vectors for the treatment of ischemic disease. Hum Gene Ther 10:2197–2208CrossRefPubMedGoogle Scholar
  14. Bruick RK (2000) Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA 97:9082–9087CrossRefPubMedGoogle Scholar
  15. Brusselmans K, Bono F, Maxwell P, Dor Y, Dewerchin M, Collen D, Herbert JM et al (2001) Hypoxia-inducible factor-2alpha (HIF-2alpha) is involved in the apoptotic response to hypoglycemia but not to hypoxia. J Biol Chem 276:39192–39196CrossRefPubMedGoogle Scholar
  16. Buescher U, Hertwig K, Wolf C, Dudenhausen JW (1998) Erythropoietin in amniotic fluid as a marker of chronic fetal hypoxia. Int J Gynaecol Obstet 60:257–263CrossRefPubMedGoogle Scholar
  17. Burton GJ, Caniggia I (2001) Hypoxia: implications for implantation to delivery — a Workshop report. Placenta 22(Suppl A):S63–S65PubMedGoogle Scholar
  18. Camenisch G, Stroka DM, Gassmann M, Wenger RH (2001) Attenuation of HIF-1 DNA-binding activity limits hypoxia-inducible endothelin-1 expression. Pflugers Arch 443: 240–249PubMedGoogle Scholar
  19. Caniggia I, Mostachfi H, Winter J, Gassmann M, Lye SJ, Kuliszewski M, Post M (2000a) Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta(3). J Clin Invest 105:577–587PubMedGoogle Scholar
  20. Caniggia I, Winter J, Lye SJ, Post M (2000b) Oxygen and placental development during the first trimester: implications for the pathophysiology of pre-eclampsia. Placenta 21(Suppl A):S25–S30PubMedGoogle Scholar
  21. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M et al (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490CrossRefPubMedGoogle Scholar
  22. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275: 25130–25138CrossRefPubMedGoogle Scholar
  23. Charlier N, Leckre N, Felderhoff U, Heldt J, Kietzmann T, Obladen M, Gross J (2002) Hypoxia-induced cell death and changes in hypoxia-inducible factor-1 activity in PC12 cells upon exposure to nerve growth factor. Brain Res Mol Brain Res 104:21–30PubMedGoogle Scholar
  24. Christou H, Morita T, Hsieh CM, Koike H, Arkonac B, Perrella MA, Kourembanas S (2000) Prevention of hypoxia-induced pulmonary hypertension by enhancement of endogenous heme oxygenase-1 in the rat. Circ Res 86:1224–1229PubMedGoogle Scholar
  25. Chun YS, Choi E, Kim TY, Kim MS, Park JW (2002) A dominant-negative isoform lacking exons 11 and 12 of the human hypoxia-inducible factor-1alpha gene. Biochem J 362:71–79CrossRefPubMedGoogle Scholar
  26. Chun YS, Choi E, Yeo EJ, Lee JH, Kim MS, Park JW (2001) A new HIF-1 alpha variant induced by zinc ion suppresses HIF-1-mediated hypoxic responses. J Cell Sci 114:4051–4061PubMedGoogle Scholar
  27. Clerici C, Matthay MA (2000) Hypoxia regulates gene expression of alveolar epithelial transport proteins. J Appl Physiol 88:1890–1896PubMedGoogle Scholar
  28. Crews ST (1998) Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev 12:607–620PubMedGoogle Scholar
  29. Dong Z, Venkatachalam MA, Wang J, Patel Y, Saikumar P, Semenza GL, Force T et al (2001) Up-regulation of apoptosis inhibitory protein IAP-2 by hypoxia. Hif-1-independent mechanisms. J Biol Chem 276:18702–18709PubMedGoogle Scholar
  30. Donnelly DF (2000) Developmental aspects of oxygen sensing by the carotid body. J Appl Physiol 88:2296–2301PubMedGoogle Scholar
  31. Dor Y, Porat R, Keshet E (2001) Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am J Physiol Cell Physiol 280:C1367–C1374PubMedGoogle Scholar
  32. Drutel G, Kathmann M, Heron A, Gros C, Mace S, Schwartz JC, Arrang JM (2000) Two splice variants of the hypoxia-inducible factor HIF-1alpha as potential dimerization Partners of ARNT2 in neurons. Eur J Neurosci 12:3701–3708CrossRefPubMedGoogle Scholar
  33. Dumas TC, McLaughlin JR, Ho DY, Lawrence MS, Sapolsky RM (2000) Gene therapies that enhance hippocampal neuron survival after an excitotoxic insult are not equivalent in their ability to maintain synaptic transmission. Exp Neurol 166:180–189CrossRefPubMedGoogle Scholar
  34. Dumas TC, Sapolsky RM (2001) Gene therapy against neurological insults: sparing neurons versus sparing function. Trends Neurosci 24:695–700CrossRefPubMedGoogle Scholar
  35. Ebert BL, Bunn HF (1998) Regulation of transcription by hypoxia requires a multiprotein complex that includes hypoxia-inducible factor 1, an adjacent transcription factor, and p300/CREB binding protein. Mol Cell Biol 18:4089–4096PubMedGoogle Scholar
  36. Ebert BL, Firth JD, Ratcliffe PJ (1995) Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct cis-acting sequences. J Biol Chem 270:29083–29089CrossRefPubMedGoogle Scholar
  37. Eckardt KU (1995) The ontogeny of the biological role and production of erythropoietin. J Perinat Med 23:19–29PubMedCrossRefGoogle Scholar
  38. Eichler W, Kuhrt H, Hoffmann S, Wiedemann P, Reichenbach A (2000) VEGF release by retinal glia depends on both oxygen and glucose supply. Neuroreport 11:3533–3537PubMedGoogle Scholar
  39. Falanga V, Zhou L, Yufit T (2002) Low oxygen tension stimulates Collagen synthesis and COL1A1 transcription through the action of TGF-beta1. J Cell Physiol 191:42–50CrossRefPubMedGoogle Scholar
  40. Fandrey J (1995) Hypoxia-inducible gene expression. Respir Physiol 101:1–10CrossRefPubMedGoogle Scholar
  41. Fernandez-Regalado R, Gross J, Capiro P, Montes E, Munoz S, Rodriguez C, Palacio JR, Syllm-Rapaport I (1989) The erythrocyte density test (EDT) and erythrocyte creatine concentration (ECE) as laboratory indexes of perinatal hypoxia. Biomed Biochim Acta 48:S282–S285PubMedGoogle Scholar
  42. Filloux FM, Adair J, Narang N (1996) The temporal evolution of striatal dopamine receptor binding and mRNA expression following hypoxia-ischemia in the neonatal rat. Brain Res Dev Brain Res 94:81–91PubMedGoogle Scholar
  43. Fisher JW (1998) A quest for erythropoietin over nine decades. Annu Rev Pharmacol Toxicol 38:1–20CrossRefPubMedGoogle Scholar
  44. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613PubMedGoogle Scholar
  45. Gauda EB, Bamford O, Gerfen CR (1996) Developmental expression of tyrosine hydroxylase, D2-dopamine receptor and substance P genes in the carotid body of the rat. Neuroscience 75:969–977CrossRefPubMedGoogle Scholar
  46. Genbacev O, Zhou Y, Ludlow JW, Fisher SJ (1997) Regulation of human placental development by oxygen tension. Science 277:1669–1672CrossRefPubMedGoogle Scholar
  47. Genbacev O, Krtolica A, Kaelin W, Fisher SJ (2001) Human cytotrophoblast expression of the von Hippel-Lindau protein is downregulated during uterine invasion in situ and upregulated by hypoxia in vitro. Dev Biol 233:526–536CrossRefPubMedGoogle Scholar
  48. Gorlach A, Camenisch G, Kvietikova I, Vogt L, Wenger RH, Gassmann M (2000) Efficient translation of mouse hypoxia-inducible factor-1alpha under normoxic and hypoxic conditions. Biochim Biophys Acta 1493:125–134PubMedGoogle Scholar
  49. Gothie E, Richard DE, Berra E, Pages G, Pouyssegur J (2000) Identification of alternative spliced variants of human hypoxia-inducible factor-1alpha. J Biol Chem 275: 6922–6927CrossRefPubMedGoogle Scholar
  50. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91CrossRefPubMedGoogle Scholar
  51. Gross J, Lun A, Berndt C (1993) Early postnatal hypoxia induces long-term changes in the dopaminergic system in rats. J Neural Transm Gen Sect 93:109–121CrossRefPubMedGoogle Scholar
  52. Gross J, Muller I, Chen Y, Elizalde M, Leclere N, Herrera MM, Andersson K (2000) Perinatal asphyxia induces region-specific long-term changes in mRNA levels of tyrosine hydroxylase and dopamine D(1) and D(2) receptors in rat brain. Brain Res Mol Brain Res 79:110–117PubMedGoogle Scholar
  53. Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA (1998) Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7:205–213PubMedGoogle Scholar
  54. Halterman MW, Federoff HJ (1999) HIF-1alpha and p53 promote hypoxia-induced delayed neuronal death in models of CNS ischemia. Exp Neurol 159:65–72CrossRefPubMedGoogle Scholar
  55. Halterman MW, Miller CC, Federoff HJ (1999) Hypoxia-inducible factor-1alpha mediates hypoxia-induced delayed neuronal death that involves p53. J Neurosci 19:6818–6824PubMedGoogle Scholar
  56. Harder T, Rake A, Rohde W, Doerner G, Plagemann A (1999) Overweight and increased diabetes susceptibility in neonatally insulin-treated adult rats. Endocr Regul 33:25–31PubMedGoogle Scholar
  57. Hartsfield CL, Alam J, Choi AM (1999) Differential signaling pathways of HO-1 gene expression in pulmonary and systemic vascular cells. Am J Physiol 277:L1133–L1141PubMedGoogle Scholar
  58. Hellstrom A, Perruzzi C, Ju M, Engstrom E, Hard AL, Liu JL, Albertsson-Wikland K et al (2001) Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci USA 98:5804–5808PubMedGoogle Scholar
  59. Hellwig-Burgel T, Rutkowski K, Metzen E, Fandrey J, Jelkmann W (1999) Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 94:1561–1567PubMedGoogle Scholar
  60. Herdegen T, Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev 28:370–490CrossRefPubMedGoogle Scholar
  61. Hofer T, Desbaillets I, Hopfl G, Gassmann M, Wenger RH (2001) Dissecting hypoxia-dependent and hypoxia-independent Steps in the HIF-1alpha activation cascade: implications for HIF-1alpha gene therapy. FASEB J 15:2715–2717PubMedGoogle Scholar
  62. Hu J, Discher DJ, Bishopric NH, Webster KA (1998) Hypoxia regulates expression of the endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense Strand. Biochem Biophys Res Commun 245:894–899CrossRefPubMedGoogle Scholar
  63. Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95:7987–7992PubMedGoogle Scholar
  64. Hulsmann AR, van den Anker JN (1997) Evolution and natural history of chronic lung disease of prematurity. Monaldi Arch Chest Dis 52:272–277PubMedGoogle Scholar
  65. Husemann B, Andreeva N, Gao J, Heldt J, Andersson K, Gross J (1999) Early hypoxia modulates the phenotype of dopaminergic cells in rat mes-and diencephalic cell cultures and induces a higher vulnerability of non-dopaminergic neurons to a second hypoxic exposure. Neurosci Lett 275:53–56CrossRefPubMedGoogle Scholar
  66. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara M, Lanz WS (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468PubMedGoogle Scholar
  67. Iyer NV, Leung SW, Semenza GL (1998) The human hypoxia-inducible factor 1alpha gene: HIF1A structure and evolutionary conservation. Genomics 52:159–165CrossRefPubMedGoogle Scholar
  68. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472PubMedGoogle Scholar
  69. Jelkmann W, Hellwig-Burgel T (2001) Biology of erythro-poietin. Adv Exp Med Biol 502:169–187PubMedGoogle Scholar
  70. Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M (2001) Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J 15:1312–1314PubMedGoogle Scholar
  71. Kallio PJ, Okamoto K, O’Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J 17:6573–6586CrossRefPubMedGoogle Scholar
  72. Keith B, Adelman DM, Simon MC (2001) Targeted mutation of the murine aryl hydrocarbon receptor nuclear translocator 2 (Arnt2) gene reveals partial redundancy with Amt. Proc Natl Acad Sci USA 98:6692–6697CrossRefPubMedGoogle Scholar
  73. Kietzmann T, Cornesse Y, Brechtel K, Modaressi S, Jungermann K (2001) Perivenous expression of the mRNA of the three hypoxia-inducible factor alpha-subunits, HI-F1alpha, HIF2alpha and HIF3alpha, in rat liver. Biochem J 354:531–537CrossRefPubMedGoogle Scholar
  74. Kimura H, Weisz A, Ogura T, Hitomi Y, Kurashima Y, Hashimoto K, D’Acquisto F, Makuuchi M, Esumi H (2001) Identification of hypoxia-inducible factor 1 ancillary sequence and its function in vascular endothelial growth factor gene induction by hypoxia and nitric oxide. J Biol Chem 276:2292–2298PubMedGoogle Scholar
  75. Knofler M, Vasicek R, Schreiber M (2001) Key regulatory transcription factors involved in placental trophoblast development — a review. Placenta 22(Suppl A):S83–92PubMedGoogle Scholar
  76. Kochling J, Curtin PT, Madan A (1998) Regulation of human erythropoietin gene induction by upstream flanking sequences in transgenic mice. Br J Haematol 103:960–968CrossRefPubMedGoogle Scholar
  77. Kohn DB, Parkman R (1997) Gene therapy for newborns. FASEB J 11:635–639PubMedGoogle Scholar
  78. Kourembanas S, Marsden PA, McQuillan LP, Faller DV (1991) Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J Clin Invest 88:1054–1057PubMedGoogle Scholar
  79. Krones A, Jungermann K, Kietzmann T (2001) Cross-talk between the signals hypoxia and glucose at the glucose response element of the L-type pyruvate kinase gene. Endocrinology 142:2707–2718CrossRefPubMedGoogle Scholar
  80. Kumer SC, Vrana KE (1996) Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem 67:443–462PubMedGoogle Scholar
  81. Lahiri S (2000) Historical perspectives of cellular oxygen sensing and responses to hypoxia. J Appl Physiol 88:1467–1473PubMedGoogle Scholar
  82. Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, Semenza GL, Choi AM (1997) Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem 272:5375–5381PubMedGoogle Scholar
  83. Lopez-Barneo J, Pardal R, Ortega-Saenz P (2001) Cellular mechanism of oxygen sensing. Annu Rev Physiol 63:259–287CrossRefPubMedGoogle Scholar
  84. Lukiw WJ, Gordon WC, Rogaev EI, Thompson H, Bazan NG (2001) Presenilin-2 (PS2) expression up-regulation in a model of retinopathy of prematurity and pathoangiogenesis. Neuroreport 12:53–57PubMedGoogle Scholar
  85. Madan A, Varma S, Cohen HJ (2002) Developmental stage-specific expression of the alpha and beta subunits of the HIF-1 protein in the mouse and human fetus. Mol Genet Metab 75:244–249CrossRefPubMedGoogle Scholar
  86. Maekawa T, Bernier F, Sato M, Nomura S, Singh M, Inoue Y, Tokunaga T et al (1999) Mouse ATF-2 null mutants display features of a severe type of meconium aspiration syndrome. J Biol Chem 274:17813–17819PubMedGoogle Scholar
  87. Maier RF, Bohme K, Dudenhausen JW, Obladen M (1993) Cord blood erythropoietin in relation to different markers of fetal hypoxia. Obstet Gynecol 81:575–580PubMedGoogle Scholar
  88. Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, Cao Y, Berkenstam A, Pöllinger L (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414:550–554CrossRefPubMedGoogle Scholar
  89. Martin C, Yu AY, Jiang BH, Davis L, Kimberly D, Hohimer AR, Semenza GL (1998) Cardiac hypertrophy in chronically anemic fetal sheep: Increased vascularization is associated with increased myocardial expression of vascular endothelial growth factor and hypoxia-inducible factor 1. Am J Obstet Gynecol 178:527–534PubMedGoogle Scholar
  90. Matsuoka H, Arai T, Mori M, Goya S, Kida H, Morishita H, Fujiwara H et al (2002) A p38 MAPK inhibitor, FR-167653, ameliorates murine bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 283: L103–L112PubMedGoogle Scholar
  91. Mazarakis ND, Edwards AD, Mehmet H (1997) Apoptosis in neural development and disease. Arch Dis Child Fetal Neonatal Ed 77:F165–F170PubMedCrossRefGoogle Scholar
  92. Mccolm JR, Fleck BW (2001) Retinopathy of prematurity: causation. Semin Neonatol 6:453–460PubMedCrossRefGoogle Scholar
  93. McLeod DS, Brownstein R, Lutty GA (1996a) Vaso-obliteration in the canine model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 37:300–311PubMedGoogle Scholar
  94. McLeod DS, Crone SN, Lutty GA (1996b) Vasoproliferation in the neonatal dog model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 37:1322–1333PubMedGoogle Scholar
  95. Meng SZ, Isumi H, Takashima S (1998) Neuropathological characteristics and alteration of the dopamine D2 receptor in hypoxic-ischemic basal ganglia necrosis. Brain Dev 20:98–104CrossRefPubMedGoogle Scholar
  96. Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Perrella MA, Mitsialis SA, Kourembanas S (2001) Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci USA 98:8798–8803CrossRefPubMedGoogle Scholar
  97. Minchenko A, Leshchinsky I, Opentanova I, Sang N, Srinivas V, Armstead V, Caro J (2002) Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem 277:6183–6187CrossRefPubMedGoogle Scholar
  98. Mishra RR, Adhikary G, Simonson MS, Cherniack NS, Prabhakar NR (1998) Role of c-fos in hypoxia-induced AP-1 cis-element activity and tyrosine hydroxylase gene expression. Brain Res Mol Brain Res 59:74–83PubMedGoogle Scholar
  99. Norman JT, Clark IM, Garcia PL (2000) Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int 58:2351–2366CrossRefPubMedGoogle Scholar
  100. Norris ML, Millhorn DE (1995) Hypoxia-induced protein binding to O2-responsive sequences on the tyrosine hydroxylase gene. J Biol Chem 270:23774–23779PubMedGoogle Scholar
  101. Obladen M (2002) Neugeborenenintensivpflege. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  102. Otterbein LE, Kolls JK, Mantell LL, Cook JL, Alam J, Choi AM (1999) Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury. J Clin Invest 103:1047–1054PubMedGoogle Scholar
  103. Ozaki H, Yu AY, Della N, Ozaki K, Luna JD, Yamada H, Hackett SF et al (1999) Hypoxia inducible factor-1alpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci 40:182–189PubMedGoogle Scholar
  104. Palmer LA, Semenza GL, Stoler MH, Johns RA (1998) Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1. Am J Physiol 274: L212–L219PubMedGoogle Scholar
  105. Paulding WR, Czyzyk-Krzeska MF (2000) Hypoxia-induced regulation of mRNA stability. Adv Exp Med Biol 475:111–121PubMedGoogle Scholar
  106. Peng J, Zhang L, Drysdale L, Fong GH (2000) The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci USA 97:8386–8391CrossRefPubMedGoogle Scholar
  107. Plessis du AJ, Johnston MV (1997) Hypoxic-ischemic brain injury in the newborn. Cellular mechanisms and potential strategies for neuroprotection. Clin Perinatol 24:627–654PubMedGoogle Scholar
  108. Post DE, Van Meir EG (2001) Generation of bidirectional hypoxia/HIF-responsive expression vectors to target gene expression to hypoxic cells. Gene Ther 8:1801–1807CrossRefPubMedGoogle Scholar
  109. Prabhakar NR (2001) Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. J Appl Physiol 90:1986–1994PubMedGoogle Scholar
  110. Premkumar DR, Adhikary G, Overholt JL, Simonson MS, Cherniack NS, Prabhakar NR (2000) Intracellular pathways linking hypoxia to activation of c-fos and AP-1. Adv Exp Med Biol 475:101–109PubMedGoogle Scholar
  111. Rajakumar A, Conrad KP (2000) Expression, ontogeny, and regulation of hypoxia-inducible transcription factors in the human placenta. Biol Reprod 63:559–569CrossRefPubMedGoogle Scholar
  112. Rajakumar A, Whitelock KA, Weissfeld LA, Daftary AR, Markovic N, Conrad KP (2001) Selective overexpression of the hypoxia-inducible transcription factor, HIF-2alpha, in placentas from women with preeclampsia. Biol Reprod 64:499–506PubMedGoogle Scholar
  113. Rapoport TA, Heinrich R, Rapoport SM (1976) The regulatory principles of glycolysis in erythrocytes in vivo and in vitro. A minimal comprehensive model describing steady states, quasi-steady states and time-dependent processes. Biochem J 154:449–469PubMedGoogle Scholar
  114. Raymond R, Millhorn D (1997) Regulation of tyrosine hydroxylase gene expression during hypoxia: role of Ca2+ and PKC. Kidney Int 51:536–541PubMedGoogle Scholar
  115. Rosenberger C, Mandriota S, Jurgensen JS, Wiesener MS, Horstrup JH, Frei U, Ratcliffe PJ et al (2002) Expression of hypoxia-inducible factor-1alpha and-2alpha in hypoxic and ischemic rat kidneys. J Am Soc Nephrol 13: 1721–1732CrossRefPubMedGoogle Scholar
  116. Roux-Rouquie M (2000) Genetic and epigenetic regulation schemes: need for an alternative paradigm. Mol Genet Metab 71:1–9CrossRefPubMedGoogle Scholar
  117. Ruscher K, Isaev N, Trendelenburg G, Weih M, Iurato L, Meisel A, Dirnagl U (1998) Induction of hypoxia inducible factor 1 by oxygen glucose deprivation is attenuated by hypoxic preconditioning in rat cultured neurons. Neurosci Lett 254:117–120CrossRefPubMedGoogle Scholar
  118. Ryan HE, Lo J, Johnson RS (1998) HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 17:3005–3015CrossRefPubMedGoogle Scholar
  119. Salceda S, Caro J (1997) Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272:22642–22647CrossRefPubMedGoogle Scholar
  120. Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186CrossRefPubMedGoogle Scholar
  121. Scheid A, Wenger RH, Schaffer L, Camenisch I, Distler O, Ferenc A, Cristina H et al (2002) Physiologically low oxygen concentrations in fetal skin regulate hypoxia-inducible factor 1 and transforming growth factor-beta3. FASEB J 16:411–413PubMedGoogle Scholar
  122. Schneider MR, Lahm H, Wu M, Hoeflich A, Wolf E (2000) Transgenic mouse models for studying the functions of insulin-like growth factor-binding proteins. FASEB J 14:629–640PubMedGoogle Scholar
  123. Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K, Johnson RS (2001) Transcription factor HIF-1 is a necessary mediator of the Pasteur effect in mammalian cells. Mol Cell Biol 21:3436–3444CrossRefPubMedGoogle Scholar
  124. Seidler FJ, Slotkin TA (1990) Effects of acute hypoxia on neonatal rat brain: regionally selective, long-term alterations in catecholamine levels and turnover. Brain Res Bull 24:157–161CrossRefPubMedGoogle Scholar
  125. Semenza GL (1994) Regulation of erythropoietin production. New insights into molecular mechanisms of oxygen homeostasis. Hematol Oncol Clin North Am 8:863–884PubMedGoogle Scholar
  126. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578CrossRefPubMedGoogle Scholar
  127. Semenza GL (2000a) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480PubMedGoogle Scholar
  128. Semenza GL (2000b) Surviving ischemia: adaptive responses mediated by hypoxia-inducible factor 1. J Clin Invest 106:809–812PubMedGoogle Scholar
  129. Semenza GL (2001a) Hypoxia-inducible factor 1: control of oxygen homeostasis in health and disease. Pediatr Res 49:614–617PubMedGoogle Scholar
  130. Semenza GL (2001b) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7:345–350CrossRefPubMedGoogle Scholar
  131. Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE (1991) Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci USA 88:5680–5684PubMedGoogle Scholar
  132. Sennlaub F, Courtois Y, Goureau O (2002) Inducible nitric oxide synthase mediates retinal apoptosis in ischemic proliferative retinopathy. J Neurosci 22:3987–3993PubMedGoogle Scholar
  133. Seta KA, Kim R, Kim HW, Millhorn DE, Beitner-Johnson D (2001) Hypoxia-induced regulation of MAPK phosphatase-1 as identified by subtractive suppression hybridization and cDNA microarray analysis. J Biol Chem 276: 44405–44412CrossRefPubMedGoogle Scholar
  134. Shimoda LA, Manalo DJ, Sham JS, Semenza GL, Sylvester JT (2001) Partial HIF-1alpha deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. Am J Physiol Lung Cell Mol Physiol 281:L202–L208PubMedGoogle Scholar
  135. Shoshani T, Faerman A, Mett I, Zelin E, Tenne T, Gorodin S, Moshel Y et al (2002) Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol 22:2283–2293CrossRefPubMedGoogle Scholar
  136. Soares MP, Lin Y, Anrather J, Csizmadia E, Takigami K, Sato K, Grey ST et al (1998) Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat Med 4:1073–1077CrossRefPubMedGoogle Scholar
  137. Stempien Otero A, Karsan A, Cornejo CJ, Xiang H, Eunson T, Morrison RS, Kay M, Wim R, Harlan J (1999) Mechanisms of hypoxia-induced endothelial cell death. Role of p53 in apoptosis. J Biol Chem 274:8039–8045PubMedGoogle Scholar
  138. Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, Wold B, McKay R (2000) Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20:7377–7383PubMedGoogle Scholar
  139. Sugawara J, Tazuke SI, Suen LF, Powell DR, Kaper F, Giaccia AJ, Giudice LC (2000) Regulation of insulin-like growth factor-binding protein 1 by hypoxia and 3′,5′-cyclic adenosine monophosphate is additive in HepG2 cells. J Clin Endocrinol Metab 85:3821–3827PubMedGoogle Scholar
  140. Syllm-Rapoport I, Daniel A, Starck H, Hartwig A, Gross J (1981) Creatine in density-fractionated red cells, a useful indicator of erythropoietic dynamics and of hypoxia past and present. Acta Haematol 66:86–95PubMedCrossRefGoogle Scholar
  141. Tazuke SI, Mazure NM, Sugawara J, Carland G, Faessen GH, Suen LF, Irwin JC et al (1998) Hypoxia stimulates insulin-like growth factor binding protein 1 (IGFBP-1) gene expression in HepG2 cells: a possible model for IGFBP-1 expression in fetal hypoxia. Proc Natl Acad Sci USA 95:10188–10193CrossRefPubMedGoogle Scholar
  142. Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL (1998) The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12:3320–3324PubMedGoogle Scholar
  143. Tranquart F, Saliba E, Barantin L, Lanneau M, Simmer L, Guilloteau D, Baulieu JL (2001) D2 receptor imaging in neonates using I-123-iodobenzamide brain SPECT. Clin Nucl Med 26:36–40PubMedGoogle Scholar
  144. Wenger RH, Gassmann M (1997) Oxygen(es) and the hypoxia-inducible factor-1. Biol Chem 378:609–616PubMedGoogle Scholar
  145. Wenger RH, Rolfs A, Kvietikova I, Spielmann P, Zimmermann DR, Gassmann M (1997) The mouse gene for hypoxia-inducible factor-1alpha — genomic organization, expression and characterization of an alternative first exon and 5′ flanking sequence. Eur J Biochem 246:155–165CrossRefPubMedGoogle Scholar
  146. Wenger RH, Rolfs A, Spielmann P, Zimmermann DR, Gassmann M (1998) Mouse hypoxia-inducible factor-1alpha is encoded by two different mRNA isoforms: expression from a tissue-specific and a housekeeping-type promoter. Blood 91:3471–3480PubMedGoogle Scholar
  147. Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL, Wood SM et al (1998) Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood 92:2260–2268PubMedGoogle Scholar
  148. Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH, Warnecke C, Mandriota S et al (2003) Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 17:271–273PubMedGoogle Scholar
  149. Yamashita K, Discher DJ, Hu J, Bishopric NH, Webster KA (2001) Molecular regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, and p300/CBP. J Biol Chem 276:12645–12653PubMedGoogle Scholar
  150. Yang C, Kim HS, Seo H, Kim KS (1998) Identification and characterization of potential cis-regulatory elements governing transcriptional activation of the rat tyrosine hydroxylase gene. J Neurochem 71:1358–1368PubMedGoogle Scholar
  151. Yenari MA, Dumas TC, Sapolsky RM, Steinberg GK (2001) Gene therapy for treatment of cerebral ischemia using defective herpes simplex viral vectors. Neurol Res 23:543–552PubMedGoogle Scholar
  152. Zaman K, Ryu H, Hall D, O’Donovan K, Lin KI, Miller MP, Marquis JC et al (1999) Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. J Neurosci 19:9821–9830PubMedGoogle Scholar
  153. Zhang JZ, Behrooz A, Ismail-Beigi F (1999) Regulation of glucose transport by hypoxia. Am J Kidney Dis 34:189–202PubMedGoogle Scholar
  154. Zulueta JJ, Sawhney R, Kayyali U, Fogel M, Donaldson C, Huang H, Lanzillo JJ, Hassoun PM (2002) Modulation of inducible nitric oxide synthase by hypoxia in pulmonary artery endothelial cells. Am J Respir Cell Mol Biol 26:22–30PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Johann Gross
    • 1
  1. 1.Hals-Nasen-Ohrenklinik, Molekularbiologisches ForschungslaborHumboldt-Universität zu Berlin Charité — Universitätsmedizin BerlinBerlin

Personalised recommendations