Störungen der Reifung und Differenzierung des Immunsystems als Krankheitsursache

  • Wilhelm Friedrich
  • Klaus Schwarz
Part of the Molekulare Medizin book series (MOLMED)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5.1.12 Literatur

  1. Antoine C, Muller S, Cant A, Cavazzana-Calvo M, Veys P, Vössen J, Fasth A et al; European Group for Blood and Marrow Transplantation; European Society for Immunodeficiency (2003) Long term survival and hematopoietic stem-cell transplantation for immunodeficiencies: report of the European experience 1968–99. Lancet 361:553–560CrossRefPubMedGoogle Scholar
  2. Arredondo-Vega FX, Santsteban I, Richard E, Bali P, Koleilat M, Loubser M, Al-Ghonaium A et al (2002) Adenosine deaminase deficiency with mosaicism for a “second-site suppressor” of a splicing mutation: decline in revertant T lymphocytes during enzyme replacement therapy. Blood 99:1005–1013CrossRefPubMedGoogle Scholar
  3. Arveiler B, de Saint-Basile G, Fischer A, Griscelli C, Mandel JL (1990) Germ-line mosaicism simulates genetic heterogeneity in Wiskott-Aldrich syndrome. Am J Hum Genet 46:906–911PubMedGoogle Scholar
  4. Aspenstroem P, Lindberg U, Hall A (1996) Two GTPases, Cdc42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome. Curr Biol 6:70–75Google Scholar
  5. Benkerrou M, Gougeon ML, Griscelli C, Fischer A (1990) Hypogammaglobulinémie G et A avec hypergammaglobulinémie M. A propos de 12 observations. Arch Fr Pediatr 47:345–349PubMedGoogle Scholar
  6. Bläase RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, Shearer G et al (1995) T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270:475–480Google Scholar
  7. Bruton OC (1952) Agammaglobulinemia. Pediatrics 9:722–727PubMedGoogle Scholar
  8. Buckley RH (2000) Primary immunodeficiency diseases due to defects in lymphocytes. N Engl J Med 343:1313–1324CrossRefPubMedGoogle Scholar
  9. Buckley RH, Fischer A (1999) Bone marrow transplantation for primary immunodeficiency diseases. In: Ochs HD, Smith CE, Puck JM (eds) Primary immunodeficiency disease. Oxford University Press, pp 459–475Google Scholar
  10. Buckley RH, Schiff RI, Schiff SE, Markert L, Williams LW, Harvilleto D, Roberts JL et al (1997) Human severe combined immunodeficiency (SCID): genetic, phenotypic and functional diversity in 100 infants. Pediatr 130:378–387Google Scholar
  11. Candotti F, Notarangelo L, Visconti R, O’shea J (2002) Molecular aspects of primary immunodeficiencies: lessons from cytokine and other signaling pathways. J Clin Invest 109:1261–1269CrossRefPubMedGoogle Scholar
  12. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G et al (2000) Gene therapy of human severe combined immunodeficiency (SCID)-Xl disease. Science 288:669–672CrossRefPubMedGoogle Scholar
  13. Chapelle de la AR, Herva R, Koivisto M, Aula P (1981) A deletion in chromosome 22 can cause DiGeorge syndrome. Hum Genet 57:253–256CrossRefPubMedGoogle Scholar
  14. Daw SC, Taylor C, Kraman M, Call K, Mao J, Schuffenhauser S, Meitinger T et al (1996) A common region of 10 p deleted in DiGeorge and velocardiofacial syndromes. Nature Genet 12:458–460Google Scholar
  15. Derry JM, Ochs HD, Francke U (1994) Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 78:635–644CrossRefPubMedGoogle Scholar
  16. Devriendt K, Kim AS, Mafhijs G, Frints SG, Schwartz M, Van Den Oord JJ, Verhoef GE et al (2001) Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 27:313–317CrossRefPubMedGoogle Scholar
  17. DiGeorge AM (1965) A new concept of the cellular basis of immunity. J Pediatr 67:907–908Google Scholar
  18. Donner M, Schwartz M, Carlsson KU, Holmberg L (1988) Hereditary X-linked thrombocytopenia maps to the same chromosomal region as the Wiskott-Aldrich syndrome. Blood 72:1849–1853PubMedGoogle Scholar
  19. Durandy A, Honjo T (2001) Human genetic defects in class-switch recombination (hyper-IgM syndromes). Curr Opin Immunol 13:543–548CrossRefPubMedGoogle Scholar
  20. Durandy A, Hivroz C, Mazevolles F, Schiff C, Bernard F, Jouanguy E, Revy P et al (1997) Abnormal CD40-mediated activation pathway in B lymphocytes from patients with hyper-IgM syndrome and normal CD40 ligand expression. J Immunol 158:2576–2584PubMedGoogle Scholar
  21. Fisher A (2000) Severe combined immunodeficiencies (SCID). Clin Exp Immunol 122:143–149Google Scholar
  22. Fisher A (2001) Primary immunodeficiency diseases: an experimental model for molecular medicine. Lancet 357:1863–1869Google Scholar
  23. Fischer A, Malissen B (1998) Natural and engineered disorders of lymphocyte development. Science 280:237–242PubMedGoogle Scholar
  24. Fischer A, Malissen B (1998) Natural and engineered disorders of lymphocyte development. Science 280:237–242PubMedGoogle Scholar
  25. Fischer A, Landais P, Friedrich W, Morgan G, Gerritsen B, Fasth A, Porta F et al (1990) European experience of bone marrow transplantation for severe combined immunodeficiency. Lancet 336:850–854CrossRefPubMedGoogle Scholar
  26. Fischer A, Landais P, Friedrich W, Gerritsen B, Fasth A, Porta F, Vellodi A et al (1994) Bone marrow transplantation (BMT) in Europe for primary immunodeficiencies other than severe combined immunodeficiency: a report from the European Group for BMT and the European Group for immunodeficiency. Blood 83:1149–1154PubMedGoogle Scholar
  27. Fischer A, Cavazzana-Calvo M, De Saint Basile G, De Villartayi P, Disanto JP, Hivroz C, Rieux-Laucat F et al (1997) Naturally occurring primary immunodeficiencies of the immune system. Ann Rev Immunol 15:93–124CrossRefGoogle Scholar
  28. Fischer A, Hacein-Bey S, Cavazzana-Calvo M (2002) Gene therapy of severe combined immunodeficiencies. Nat Rev Immunol 2:615–621PubMedGoogle Scholar
  29. Friedrich W (2002) Blutstammzelltransplantation bei primären Immundefekterkrankungen. Monatsschr Kinderheilkd 150:1188–1194CrossRefGoogle Scholar
  30. Friedrich W, Goldmann SF, Vetter U, Fliedner TM, Heymer B, Peter HH, Reisner Y et al (1984) Immunoreconstitution in severe combined immunodeficiency after transplantation of HLA-haploidentical, T-cell-depleted bone marrow. Lancet 1:761–764PubMedGoogle Scholar
  31. Giblett ER, Anderson JE, Cohen F, Pollara B, Meuwissen HJ (1972) Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 2:1067–1069PubMedGoogle Scholar
  32. Giblett ER, Ammann AJ, Wara DW, Sandman R, Diamond LK (1975) Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet 1:1010–1013PubMedGoogle Scholar
  33. Goldberg R, Motzkin B, Marion R, Scambler PJ, Shprintzen RJ (1993) Velo-cardio-facial syndrome: a review of 120 patients. Am J Med Genet 45:313–319CrossRefPubMedGoogle Scholar
  34. Gong W, Emanuel BS, Galili N, Kim DH, Roe B, Driscoll DA, Budarf ML (1997) Structural and mutational analysis of a conserved gene (DGSI) from the minimal DiGeorge syndrome critical region. Hum Mol Genet 6:267–276CrossRefPubMedGoogle Scholar
  35. Greenberg E, Eider FF, Haffner P, Northrup H, Ledbetter DH (1988) Cytogenetic findings in a prospective series of patients with DiGeorge anomaly. Am J Hum Genet 43:605–611PubMedGoogle Scholar
  36. Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP, Thrasher AJ et al (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–9CrossRefPubMedGoogle Scholar
  37. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, Mclntyre E, Radford I et al (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256CrossRefPubMedGoogle Scholar
  38. Haynes BF, Martin ME, Kay HH, Kurtzberg J (1988) Early events in human T cell ontogeny. Phenotypic characterization and immunohistologic localization of T cell precursors in early human fetal tissues. J Exp Med 168:1061–1080CrossRefPubMedGoogle Scholar
  39. Haynes BF, Denning SM (1994) Lymphopoiesis. In: Stamatoyannopoulis G, Nienhuis A, Majerus P, Varmus H (eds) Molecular basis of blood diseases, 2nd edn. Saunders, Phüadelphia, pp 425–462Google Scholar
  40. Hirschhorn R (1993) Overview of biochemical abnormalities and molecular genetics of adenosine deaminase deficiency. Pediatr Res 33:35–41Google Scholar
  41. Hirschhorn R (1995) Adenosine deaminase deficiency: molecular basis and recent developments. Clin Immunol Immunopath 76:219–227CrossRefGoogle Scholar
  42. Hirschhorn R, Israni A, Yang DR, Ownby D (1994) Somatic mosaicism for a newly identified splice site mutation in a patient with adenosine deaminase deficient immunodeficiency (ADA-CID) and spontaneous recovery. Am J Hum Genet 55:59–68PubMedGoogle Scholar
  43. Hirschhorn R, Yang DR, Puck JM, Huie ML, Jiang CK, Kurlandsky LE (1996) Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adenosine deaminase deficiency. Nature Genet 13:290–295CrossRefPubMedGoogle Scholar
  44. Hitzig WH, Biro Z, Bosch H, Huser HJ (1958) Agammaglobulinämie und Alymphozytose mit Schwund des lymphatischen Gewebes. Helv Paediatr Acta 13:551–585PubMedGoogle Scholar
  45. Ihle JN (1995) Cytokine receptor signalling. Nature 377:591–594CrossRefPubMedGoogle Scholar
  46. Johnston JA, Kawamura M, Kirken RA, Chen Y-Q, Blake TB, Shibuya K, Ortaldo JR et al (1994) Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature 370:151–153CrossRefPubMedGoogle Scholar
  47. Kameoka J, Tanaka T, Nojiama I, Schlossman SF, Morimoto C (1993) Direct association of adenosine deaminase with a T cell activation antigen CD26. Science 261:466–469PubMedGoogle Scholar
  48. Kawamura M, McVicar DW, Johnston JA, Blake TB, Chen YQ, Lal BK, Lloyd AR et al (1994) Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes. Proc Natl Acad Sci USA 91:6374–6378PubMedGoogle Scholar
  49. Kirby ML, Gale TF, Stewart DE (1983) Neural crest cells contribute to normal aorticopulmonary septation. Science 220:1059–1061PubMedGoogle Scholar
  50. Knobloch C, Goldmann SF, Friedrich W (1991) Limited T cell receptor diversity of transplacentally acquired maternal T cells in severe combined immunodeficiency. J Immunol 146:4157–4162PubMedGoogle Scholar
  51. Kurlandsy LE, Webb P, Hirschhorn R (1993) Partial adenosine deaminase in an immunodeficient child. Pediatr Asthma Allergy Immunol 7:51–55Google Scholar
  52. Lederman HM, Winkelstein JA (1985) X-linked agammaglobulinemia: an analysis of 96 patients. Medicine (Baltimore) 64:145–156PubMedGoogle Scholar
  53. Leonard WJ, Noguchi M, Russell SM, McBride OW (1994) The molecular basis of X-linked severe combined immunodeficiency: the role of the interleukin-2 receptor gamma chain as a common γ chain, γc. Immunol Rev 138:61–86PubMedGoogle Scholar
  54. Lieber MR, Grawunder U, Wu X, Yaneva M (1997) Tying loose ends: roles of KU and DNA-dependent protein kinase in the repair of double-strand breaks. Curr Opin Genet Develop 7:99–104Google Scholar
  55. Ma Y, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108:781–794CrossRefPubMedGoogle Scholar
  56. Macchi P, Villa A, Giliani S, Sacco MG, Frattini A, Porta F, Ugazio AG et al (1995) Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377:65–68CrossRefPubMedGoogle Scholar
  57. Malek TR, Porter BO, He YW (1999) Multiple gamma c-dependent cytokines regulate T-cell development. Immunol Today 2:71–76Google Scholar
  58. Manley NR (2000) Thymus organogenesis and molecular mechanisms of thymic epithelial cell differentiation. Semin Immunol 12:421–428CrossRefPubMedGoogle Scholar
  59. Mayer L, Kwan SP, Thompson C, Ko HS, Chiorazzi N, Waldmann T, Rosen F (1986) Evidence for a defect in “switch” T cells in patients with immunodeficiency and hyperimmunoglobulinemia M. N Eng J Med 314:409–413Google Scholar
  60. McBlane JF, van Gent DC, Ramsden DA, Romeo C, Cuomo CA, Geliert M, Oettinger MA (1996) Cleavage at a V(D)J recombination signal requires only RAG 1 and RAG 2 proteins and occurs in two Steps. Cell 83:387–395Google Scholar
  61. Mebius RE (2003) Organogenesis of lymphoid tissues. Nat Rev Immunol 3:292–303CrossRefPubMedGoogle Scholar
  62. Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM, Xavier RJ et al (2001) TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629CrossRefPubMedGoogle Scholar
  63. Morgan G, Levinsky RJ, Hugh-Jones K, Fairbanks LD, Morris GS, Simmonds HA (1987) Heterogeneity of biochemical, clinical and immunological parameters in severe combined immunodeficiency due to adenosine deaminase deficiency. Clin Exp Immunol 70:491PubMedGoogle Scholar
  64. Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F, Tezcan I et al (2001) Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105:177–186CrossRefPubMedGoogle Scholar
  65. Moshous D, Callebaut I, de Chasseval R, Poinsignon C, Villey I, Fischer A, de Villartay JP (2003) The V(D)J recombination/DNA repair factor artemis belongs to the metal-lo-ss-lactamase family and constitutes a critical developmental Checkpoint of the lymphoid system. Ann NY Acad Sci 987:150–157PubMedCrossRefGoogle Scholar
  66. Müller SM, Ege M, Pottharst A, Schulz AS, Schwarz K, Friedrich W (2001) Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients. Blood 98:1847–1851PubMedGoogle Scholar
  67. Noguchi M, Yi H, Rosenblatt HM, Filipovich AH, Adelstein S, Modi WS, McBride OW et al (1993) Interleukin receptor γ chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73:147–157CrossRefPubMedGoogle Scholar
  68. Notarangelo LD, Düse M, Ugazio AG (1992) Immunodeficiency with hyper-IgM (HIGM). Immunodef Rev 3:101–122PubMedGoogle Scholar
  69. Notarangelo LD, Vüla A, Schwarz K (1999) RAG and RAG defects. Curr Opin Immunol 11:435–442CrossRefPubMedGoogle Scholar
  70. O’Reilly RJ, Small TN, Friedrich W (1999) Hematopoietic cell transplant for immunodeficiency diseases. In: Thomas ED, Blume KG, Forman SJ (eds) Hematopoietic cell transplantation, 2nd edn. Blackwell, Maiden MA, pp 1154–1172Google Scholar
  71. Ochs HD, Smith CIE (1996) X-linked agammaglobulinemia: a clinical and molecular analysis. Medicine 75:287–299CrossRefPubMedGoogle Scholar
  72. Ochs HD, Smith CE, Puck JM (1999) Primary immunodeficiency disease. Oxford University Press, pp 459–475Google Scholar
  73. Öttinger MA, Stanger B, Schatz DG, Glaser T, Call K, Housman D, Baltimore D (1992) The recombination activating genes, RAG 1 and RAG 2, are on chromosome 11p in humans and chromosome 2p in mice. Immunogenetics 35:97–101Google Scholar
  74. Okazaki IM, Hiai H, Kakazu N, Yamada S, Muramatsu M, Kinoshita K, Honjo T (2003) Constitutive expression of AID leads to tumorigenesis. J Exp Med 197:1173–1181CrossRefPubMedGoogle Scholar
  75. Owen JJ, Moore NC (1995) Thymocyte-stromal-cell interactions and T-cell selection. Immunol Today 16:336–338CrossRefPubMedGoogle Scholar
  76. Parolini O, Ressmann G, Haas OA, Pawlowsky J, Gadner H, Knapp W, Holter W (1998) X-linked Wiskott-Aldrich syndrome in a girl. N Engl J Med 338:291–295CrossRefPubMedGoogle Scholar
  77. Perez E, Sullivan KE (2002) Chromosome 22q11.2 deletion syndrome (DiGeorge and velocardiofacial syndromes). Curr Opin Pediatr 14:678–683CrossRefPubMedGoogle Scholar
  78. Perry GS III, Spector BD, Schuman LM, Mandel JS, Anderson VE, McHugh RB, Hanson MR et al (1980) The Wiskott-Aldrich syndrome in the United States and Canada (1892–1979). J Pediatr 97:72–78PubMedGoogle Scholar
  79. Pollack S, Kirkpatrick D, Kapoor N, Dupont B, O’Reilly R (1982) Identification by HLA typing of intrauterine-derived maternal T cells in four patients with severe combined immunodeficiency. N Engl J Med 307:662–665PubMedCrossRefGoogle Scholar
  80. Puck JM, Deschenes SM, Porter JC, Dutra AS, Brown CJ, Willard HF, Henthorn PS (1993) The interleukin-2 receptor γ chain maps to Xq13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum Molec Genet 2:1099–1104PubMedGoogle Scholar
  81. Puck JM, De Saint-Basile G, Schwarz K, Fugmann S, Fischer RE (1996) ILRGbase: a database of γc-chain defects causing human X-SCID. Immunol Today 17:507–511CrossRefPubMedGoogle Scholar
  82. Rawlings DJ, Witte ON (1994) Bruton’s tyrosine kinase is a key regulator in B-cell development. Immun Rev 138:105–119PubMedGoogle Scholar
  83. Remold-O’Donnell E, Rosen FS, Kenney DM (1996) Defects in Wiskott-Aldrich syndrome blood cells. Blood 87:2621–2631PubMedGoogle Scholar
  84. Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N et al (2000) Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102:565–575CrossRefPubMedGoogle Scholar
  85. Riedy MC, Dutra AS, Blake TB, Modi W, Lal BK, Davis J, Bosse A et al (1996) Genomic sequence, organization, and chromosomal localization of human JAK3. Genomics 37:57–61CrossRefPubMedGoogle Scholar
  86. Rocca B, Bellacosa A, De Cristofaro R, Neri G, Della Ventura M, Maggiano N, Rumi C et al (1996) Wiskott-Aldrich syndrome: report of an autosomal dominant variant. Blood 87:4538–4543PubMedGoogle Scholar
  87. Rosen FS, Cooper MD, Wedgewood RJ (1995) The primary immunodeficiencies. N Engl J Med 333:431–440CrossRefPubMedGoogle Scholar
  88. Rosen FS (1997) Severe combined immunodeficiency: a pediatric emergency. J Pediatr 130:345–346PubMedGoogle Scholar
  89. Russell SM, Tayebi N, Nakajima H, Riedy MC, Roberts JL, Aman MJ, Migone TS et al (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270:797–800PubMedGoogle Scholar
  90. Sakamoto M, Kanegane H, Fujii H, Tsukada S, Miyawaki T, Shinomiya N (2001) Maternal germinal mosaicism of X-linked agammaglobulinemia. Am J Med Genet 99:234–237CrossRefPubMedGoogle Scholar
  91. Saint-Basile de GD, Arveiler B, Oberle I, Malcom S, Levinsky RJ, Lau YL, Hofker M et al (1987) Close linkage of the locus for X-chromosome-linked severe combined immunodeficiency to polymorphic DNA markers in Xq11-Xq13. Proc Natl Acad Sci USA 84:7576PubMedGoogle Scholar
  92. Saint-Basile de GD, Tabone MD, Durandy A, Phan F, Fischer A, LeDeist F (1999) CD40 ligand expression deficiency in a female carrier of the X-linked hyper-IgM syndrome as a result of X chromosome lyonization. Eur J Immunol 29:367–373PubMedGoogle Scholar
  93. Schatz DG, Öttinger MA, Baltimore D (1989) The V(D)J recombination activating gene, RAG-1. Cell 59:1035–1048CrossRefPubMedGoogle Scholar
  94. Schwarz K, Bartram CR (1996) V(D)J recombination pathology. Adv Immunol 61:285–326PubMedGoogle Scholar
  95. Schwarz K, Hameister H, Gessler M, Grzeschik K-H, Hansen-Hagge TE, Bartram CR (1994) Confirmation of the localization of the human recombination activating gene 1 (RAG 1) to chromosome 11p13. Hum Genet 93:215–217CrossRefPubMedGoogle Scholar
  96. Schwarz K, Gauss GH, Ludwig L, Pannicke U, Li Z, Lindner D, Friedrich W et al (1996a) RAG mutations in human B cell-negative SCID. Science 274:97–99CrossRefPubMedGoogle Scholar
  97. Schwarz K, Nonoyama S, Peitsch MC, de Saint Basile G, Espanol T, Fasth A, Fischer A et al (1996b) WASPbase: a database of WAS-and XLT-causing mutations. Immunol Today 17:496–502CrossRefPubMedGoogle Scholar
  98. Schwarz K, Pannike U, Fugmann SD, Bartram CR (1999) Angeborene lymphozytäre Immundefekte. In: Ruckpaul K, Ganten D (Hrsg) Immunsystem und Infektiologie. Handbuch der molekularen Medizin und Gentherapie, Bd 4. Springer, Berlin Heidelberg New York Tokio, S 40–83Google Scholar
  99. Smith CE, Witte OE (1999) in: Ochs HD, Smith CE, Puck JM (eds) Primary immunodeficiency disease. Oxford University Press, pp 263–284Google Scholar
  100. Stephan JL, Vlekova V, Le Deist F, Blanche S, Donadieu J, de Saint Basile G, Durandy A et al (1993) Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 cases. J Pediatr 123:5047–5072Google Scholar
  101. Stephan V, Wahn V, LeDeist F, Dirksen U, Broker B, Muller-Fleckenstein I, Horneff G et al (1996) Atypical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells. N Engl J Med 335:1563–1567CrossRefPubMedGoogle Scholar
  102. Sullivan KE, Müllen CA, Bläse RM, Winkelstein JA (1994) A multiinstitutional survey of the Wiskott-Aldrich syndrome. J Pediatr 125:876–885PubMedGoogle Scholar
  103. Symons M, Derry JM, Karlak B, Jiangs S, Lemahieu V, McCormick F, Francke U et al (1996) Wiskott-Aldrich syndrome protein, a novel effector for the GTPase Cdc42Hs, is implicated in actin polymerization. Cell 84:723–734CrossRefPubMedGoogle Scholar
  104. Taniguchi T (1995) Cytokine signalling through nonreceptor protein tyrosine kinases. Science 268:251–255PubMedGoogle Scholar
  105. Thrasher AJ (2002) WASP in immune-system, organization and funetion. Nat Rev Immunol 2:635–646CrossRefPubMedGoogle Scholar
  106. Thrasher AJ, Kinnon C (2000) The Wiskott-Aldrich syndrome. Clin Exp Immunol 120:2–9CrossRefPubMedGoogle Scholar
  107. Ting SS, Ziegler J, Leigh D, Kemp A, Lindeman R (1998) Mosaicism in X-linked severe combined immunodeficiency. J Pediatr 133:575–576PubMedGoogle Scholar
  108. Vetrie D, Vörechovsky I, Sideras P, Holland J, Davies A, Flinter F, Hammarstrom L et al (1993) The gene involved in X-linked agammaglobulinemia is a member of the src family of protein-tyrosin kinases. Nature 361:226–233CrossRefPubMedGoogle Scholar
  109. Vihinen M, Iwata T, Kinnon C, Kwan SP, Ochs HD, Vörechovsky I, Smith CIE (1996) BTKbase, mutation database for X-linked agammaglobulinemia (XLA). Nucleic Acids Res 24:160–165CrossRefPubMedGoogle Scholar
  110. Villa A, Santagata S, Bozzi F, Giliani S, Frattini A, Imberti L, Gatta LB et al (1998) Partial V(D)J recombination activity leads to Omenn syndrome. Cell 93:885–896CrossRefPubMedGoogle Scholar
  111. Wada T, Konno A, Schurman SH, Garabedian EK, Anderson SM, Kirby M, Nelson DL et al (2003) Second-site mutation in the Wiskott-Aldrich syndrome (WAS) protein gene causes somatic mosaicism in two WAS siblings. J Clin Invest 111:1389–1397CrossRefPubMedGoogle Scholar
  112. WHO Scientific Group Report (1999) Primary immunodeficiency diseases. Clin Exp Immunol 118:1–34Google Scholar
  113. Wintrobe MM (1967) The origin and development of the cells of the blood in the embryo, infant and adult. In: Wintrobe MM (ed) Clinical hematology. Lea & Febiger, Philadelphia, pp 1–62Google Scholar
  114. Witthuhn BA, Silvenoinen O, Miura O, Lai KS, Cwik C, Liu ET, Ihle JN (1994) Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature 370:153–157CrossRefPubMedGoogle Scholar
  115. Zhu Q, Watanabe C, Liu T, Hollenbaugh D, Blase RM, Kanner SB, Aruffo A, Ochs HD (1997) Wiskott-Aldrich syndrome/X-linked thrombocytopenia: WASP mutations, protein expression and phenotype. Blood 90:2680–2689PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Wilhelm Friedrich
    • 1
  • Klaus Schwarz
    • 2
  1. 1.Universitätsklinik füur Kinder- und JugendmedizinUlm
  2. 2.Institut füur klinische Transfusionsmedizin und Immungenetik und Abteilung TransfusionsmedizinUniversität UlmUlm

Personalised recommendations