Advertisement

Molekulare Mechanismen von Fehlbildungen, Wachstums-, Differenzierungs- und Entwicklungsstörungen des Zentralnervensystems

  • Patrick Collombat
  • Ahmed Mansouri
Part of the Molekulare Medizin book series (MOLMED)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.1.5 Literatur

  1. Ang S, Rossant J (1994) HNF-3 beta is essential for node and notochord formation in mouse development. Cell 78:561–574CrossRefPubMedGoogle Scholar
  2. Ang S-L, Jin O, Rhinn M, Daigle N, Stevensen L, Rossant J (1996) A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 121:243–252Google Scholar
  3. Auerbach R (1954) Analysis of the developmental effects of a lethal mutation in the house mouse. J Exp Zool 127:305–329CrossRefGoogle Scholar
  4. Bachiller D, Klingensmith J, Kemp C, Belo JA, Anderson RM (2000) The organizer factors chordin and noggin are required for mouse forebrain development. Nature 403:658–661PubMedCrossRefGoogle Scholar
  5. Barkovich AJ, Koch TK, Carrol CL (1991) The spectrum of lissencephaly: report of ten patients analyzed by magnetic resonance imaging. Ann Neurol 30:139–146CrossRefPubMedGoogle Scholar
  6. Beddington RS (1994) Induction of a second neural axis by the mouse node. Development 120:613–620PubMedGoogle Scholar
  7. Beddington RS, Robertson EJ (1999) Axis development and early asymmetry in mammals. Cell 96:195–209CrossRefPubMedGoogle Scholar
  8. Bishop KM, Goudreau G, O’Leary DD (2000) Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288:344–349CrossRefPubMedGoogle Scholar
  9. Bouwmeester T, Kim S, Sasai Y, Lu B, De Robertis EM (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382:595–601CrossRefPubMedGoogle Scholar
  10. Brennan J, Lu CC, Norris DP, Rodriguez TA, Beddington RS, Robertson EJ (2001) Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411:965–969CrossRefPubMedGoogle Scholar
  11. Briscoe J, Ericson J (2001) Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol 11:43–49CrossRefPubMedGoogle Scholar
  12. Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445CrossRefPubMedGoogle Scholar
  13. Brunelli S, Faiella A, Capra V, Nigro V, Simeone A (1996) Germline mutations in the homeobox gene EMX2 in patients with severe schizencephaly. Nat Genet 12:94–96CrossRefPubMedGoogle Scholar
  14. Bulchand S, Grove EA, Porter FD, Tole S (2001) LIM-homeodomain gene Lhx2 regulates the formation of the cortical hem. Mech Dev 100:165–175CrossRefPubMedGoogle Scholar
  15. Bulfone A, Smiga SM, Shimamura K, Peterson A, Puelles L, Rubenstein JL (1995) T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15:63–78CrossRefPubMedGoogle Scholar
  16. Cahana A, Escamez T, Nowakowski RS, Hayes NL, Giacobini M (2001) Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization. Proc Natl Acad Sci U S A 98:6429–6434CrossRefPubMedGoogle Scholar
  17. Capra V, De Marco P, Moroni A, Faiella A, Brunelli S (1996) Schizencephaly: surgical features and new molecular genetic results. Eur J Pediatr Surg 6Suppl 1:27–29PubMedCrossRefGoogle Scholar
  18. Caviness VS Jr (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res 256:293–302PubMedGoogle Scholar
  19. Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94:727–737CrossRefPubMedGoogle Scholar
  20. Chen WH, Morriss-Kay GM, Copp AJ (1995) Genesis and prevention of spinal neural tube defects in the curly tail mutant mouse: involvement of retinoic acid and its nuclear receptors RAR-beta and RAR-gamma. Development 121:681–691PubMedGoogle Scholar
  21. Chong SS, Pack SD, Roschke AV, Tanigami A, Carrozzo R (1997) A revision of the lissencephaly and Miller-Dieker syndrome critical regions in chromosome 17p13.3. Hum Mol Genet 6:147–155CrossRefPubMedGoogle Scholar
  22. Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120:1919–1928PubMedGoogle Scholar
  23. Corbo JC, Deuel TA, Long JM, LaPorte P, Tsai E, Wynshaw-Boris A, Walsh CA (2002) Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. J Neurosci 17:7548–7557Google Scholar
  24. Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380:66–68CrossRefPubMedGoogle Scholar
  25. Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327:1832–1835PubMedCrossRefGoogle Scholar
  26. D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723PubMedCrossRefGoogle Scholar
  27. Deng X, Bedford M, Li C, Xu X, Yang X, Dunmore J, Leder P (1997) Fibroblast growth factor receptor1 (FGFR1) is essential for normal neural tube and limb development. Dev Biol 185:42–54CrossRefPubMedGoogle Scholar
  28. De Robertis EM, Oliver G, Wright CVE (1989) Determination of axial polarity in the vertebrate embryo: homeodomain proteins and homeogenetic induction. Cell 57:189–191PubMedCrossRefGoogle Scholar
  29. Dobyns WB, Elias ER, Newlin AC, Pagon RA, Ledbetter DH (1992) Causal heterogeneity in isolated lissencephaly. Neurology 42:1375–1388PubMedGoogle Scholar
  30. Dobyns WB, Reiner O, Carrozzo R, Ledbetter DH (1993) Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17pl3. JAMA 270:2838–2842CrossRefPubMedGoogle Scholar
  31. Donoghue MJ, Rakic P (1999) Molecular gradients and compartments in the embryonic primate cerebral cortex. Cereb Cortex 9:586–600CrossRefPubMedGoogle Scholar
  32. Ericson J, Muhr J, Placzek M, Lints T, Jessell TM, Edlund T (1995) Sonic hedgehog induces the differentiation of ventral forebrain neurons — a common signal for ventral patterning within the neural-tube. Cell 81:747–756CrossRefPubMedGoogle Scholar
  33. Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A (1997) Pax6 controls progenitor cell identity and neuronal Fate in response to graded Shh signaling. Cell 90:169–180CrossRefPubMedGoogle Scholar
  34. Fernandez AS, Pieau C, Reperant J, Boncinelli E, Wassef M (1998) Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 125:2099–2111PubMedGoogle Scholar
  35. Fleck MW, Hirotsune S, Gambello MJ, Phillips-Tansey E, Suares G (2000) Hippocampal abnormalities and enhanced excitability in a murine model of human lissencephaly. J Neurosci 20:2439–2450PubMedGoogle Scholar
  36. Fleming A, Copp AJ (1998) Embryonic folate metabolism and mouse neural tube defects. Science 280:2107–2109CrossRefPubMedGoogle Scholar
  37. Galceran J, Miyashita-Lin EM, Devaney E, Rubenstein JL, Grosschedl R (2000) Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development 127:469–482PubMedGoogle Scholar
  38. Gilmore EC, Ohshima T, Goffmet AM, Kulkarni AB, Herrup K (1998) Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J Neurosci 18:6370–6377PubMedGoogle Scholar
  39. Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362PubMedCrossRefGoogle Scholar
  40. Goodrich LV, Milenkovic L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277:1109–13CrossRefPubMedGoogle Scholar
  41. Granata T, Farina L, Faiella A, Cardini R, D’Incerti L (1997) Familial schizencephaly associated with EMX2 mutation. Neurology 48:1403–1406PubMedGoogle Scholar
  42. Greene ND, Copp AJ (1997) Inositol prevents folate-resistant neural tube defects in the mouse. Nat Med 3:60–66CrossRefPubMedGoogle Scholar
  43. Gulisano M, Broccoli V, Pardini C, Boncinelli E (1996) Emx1 and Emx2 show different patterns of expression during proliferation and differentiation of the developing cerebral cortex in the mouse. Eur J Neurosci 8:1037–1050PubMedCrossRefGoogle Scholar
  44. Gupta A, Tsai LH, Wynshaw-Boris A (2002) Life is a journey: a genetic look at neocortical development. Nat Rev Genet 3:342–355CrossRefPubMedGoogle Scholar
  45. Hemmati-Brivanlou A, Melton DA (1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77:273–282PubMedCrossRefGoogle Scholar
  46. Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann’s organizer and displays direct neuralizing activity. Cell 77:283–295PubMedCrossRefGoogle Scholar
  47. Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC (1999) Direct binding of reelin to VLDL receptor and apoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481–489CrossRefPubMedGoogle Scholar
  48. Hildebrand JD, Soriano P (1999) Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99:485–497CrossRefPubMedGoogle Scholar
  49. Hirotsune S, Fleck MW, Gambello MJ, Bix GJ, Chen A (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 19:333–339PubMedCrossRefGoogle Scholar
  50. Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26:93–96PubMedCrossRefGoogle Scholar
  51. Hui CC, Joyner AL (1993) A mouse model of Greig cephalo-polysyndactyly syndrome: the extra-toesj mutation contains an intragenic deletion of the Gli3 gene. Nature Genetics 3:241–246CrossRefPubMedGoogle Scholar
  52. Jostes B, Walther C, Gruss P (1991) The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech. Dev. 33:27–38CrossRefGoogle Scholar
  53. Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends Genet 12:15–20CrossRefPubMedGoogle Scholar
  54. Joyner AL, Skarnes WC, Rossant J (1989) Production of a mutation in mouse En-2 gene by homologous recombination in embryonic stem cells. Nature 338:153–156CrossRefPubMedGoogle Scholar
  55. Juriloff DM, Harris MJ (2000) Mouse modeis for neural tube closure defects. Hum Mol Genet 9:993–1000CrossRefPubMedGoogle Scholar
  56. Kessel M, Gruss P (1991) Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67:89–104PubMedCrossRefGoogle Scholar
  57. Klingensmith J, Ang SL, Bachiller D, Rossant J (1999) Neural induction and patterning in the mouse in the absence of the node and its derivatives. Dev Biol 216:535–549CrossRefPubMedGoogle Scholar
  58. Koleske AJ, Gifford AM, Scott ML, Nee M, Bronson RT (1998) Essential roles for the Abi and Arg tyrosine kinases in neurulation. Neuron 21:1259–1272CrossRefPubMedGoogle Scholar
  59. Lanier LM, Gates MA, Witke W, Menzies AS, Wehman AM (1999) Mena is required for neurulation and commissure formation. Neuron 22:313–325CrossRefPubMedGoogle Scholar
  60. Lee SM, Tole S, Grove E, McMahon AP (2000) A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127:457–467PubMedGoogle Scholar
  61. Leyns L, Bouwmeester T, Kim SH, Piccolo S, De Robertis EM (1997) Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88:747–756CrossRefPubMedGoogle Scholar
  62. Levitt P (1984) A monoclonal antibody to limbic system neurons. Science 223:299–301PubMedCrossRefGoogle Scholar
  63. Li JY, Joyner AL (2001) Otx2 and Gbx2 are required for refinement and not induction of mid-hindbrain gene expression. Development 128:4979–4991PubMedGoogle Scholar
  64. Liem KF Jr, Tremmel G Jessell TM (1997) A role for the roof plate and its resident TGFβ-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91:127–138CrossRefPubMedGoogle Scholar
  65. Liem KF Jr, Remml G, Roelink H, Jessell TM (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82:969–979CrossRefPubMedGoogle Scholar
  66. Lomaga MA, Henderson JT, Elia AJ, Robertson J, Noyce RS (2000) Tumor necrosis factor receptor-associated factor 6 (TRAF6) deficiency results in exencephaly and is required for apoptosis within the developing CNS. J Neurosci 20:7384–7393PubMedGoogle Scholar
  67. Lo Nigro C, Chong CS, Smith AC, Dobyns WB, Carrozzo R, Ledbetter DH (1997) Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Hum Mol Genet 6:157–164CrossRefPubMedGoogle Scholar
  68. Lu CC, Brennan J, Robertson EJ (2001) From fertilization to gastrulation: axis formation in the mouse embryo. Curr Opin Genet Dev 11:384–392CrossRefPubMedGoogle Scholar
  69. Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115CrossRefPubMedGoogle Scholar
  70. Mansouri A, Stoykova A, Gruss P (1994) Pax genes in development. J. Cell Sci (Suppl) 18:35–42Google Scholar
  71. Mansouri A, Hallonet M, Gruss P (1996 a) Pax genes and their role in cell differentiation and development. Curr Opin Cell Biol 8:851–857CrossRefPubMedGoogle Scholar
  72. Mansouri A, Stoykova A, Torres M, Gruss P (1996b) Dysgenesis of cephalic neural crest derivatives in Pax 7-/-mutant mice. Development 122:831–838PubMedGoogle Scholar
  73. Mansouri A, Gruss P (1998) Pax3 and Pax7 are expressed in commissural neurons and restrict ventral neuronal identity in the spinal cord. Mech Dev 78:171–178CrossRefPubMedGoogle Scholar
  74. Mansouri A, Pia P, Larue L, Gruss P (2001) Pax3 acts cell autonomously in the neural tube and somites by controlling cell surface properties. Development 128:1995–2005PubMedGoogle Scholar
  75. Matsuo I, Kuratani S, Kimura C, Takeda N, Aizawa S (1995) Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev 9:2646–2658PubMedCrossRefGoogle Scholar
  76. McMahon AP, Bradley A (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62:1073–1085CrossRefPubMedGoogle Scholar
  77. McMahon JA, Takada S, Zimmerman LB, Fan CM, Harland RM, McMahon AP (1998) Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev 12:1438–1452PubMedCrossRefGoogle Scholar
  78. Milenkovic L, Goodrich LV, Higgins KM, Scott MP (1999) Mouse patched1 controls body size determination and limb patterning. Development 126:4431–4440PubMedGoogle Scholar
  79. Millet S, Bloch-Gallego E, Simeone A, Alvarado-Mallart RM (1996) The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridization and chick/quail homotopic grafts. Development 122:3785–3797PubMedGoogle Scholar
  80. Ming JE, Kaupas ME, Roessler E, Brunner HG, Golabi M, Tekin M, Stratton RF, et al (2002) Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly. Hum Genet 110:297–301CrossRefPubMedGoogle Scholar
  81. Miyashita-Lin EM, Hevner R, Wassarman KM, Martinez S, Rubenstein JL (1999) Early neocortical regionalization in the absence of thalamic innervation. Science 285:906–909CrossRefPubMedGoogle Scholar
  82. Muenke M, Beachy PA (2000) Genetics of ventral forebrain development and holoprosencephaly. Curr Opin Genet Dev 10:262–269CrossRefPubMedGoogle Scholar
  83. Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1:423–434CrossRefPubMedGoogle Scholar
  84. Nagai T, Aruga J, Minowa O, Sugimoto T, Ohno Y (2000) Zic2 regulates the kinetics of neurulation. Proc Natl Acad Sci USA 97:1618–1623CrossRefPubMedGoogle Scholar
  85. Nakagawa Y, Johnson JE, O’Leary DD (1999) Graded and areal expression patterns of regulatory genes and cadherins in embryonic neocortex independent of thalamocortical input. J Neurosci 19:10877–10885PubMedGoogle Scholar
  86. Niehrs C (1999) Head in the WNT: the molecular nature of Spemann’s head organizer. Trends Genet 15:314–319CrossRefPubMedGoogle Scholar
  87. Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA 93:11173–11178CrossRefPubMedGoogle Scholar
  88. Pani L, Horal M, Loeken MR (2002) Rescue of neural tube defects in Pax-3-deficient embryos by p53 loss of function: implications for Pax-3-dependent development and tumorigenesis. Genes Dev 16:676–680CrossRefPubMedGoogle Scholar
  89. Patapoutian A, Reichardt LF (2000) Roles of Wnt proteins in neural development and maintenance. Curr Opin Neurobiol 10:392–399CrossRefPubMedGoogle Scholar
  90. Pellegrini M, Mansouri A, Simeone A, Boncinelli E, Gruss P (1996) Dentate gyrus formation requires Emx2. Development 122:3893–3898PubMedGoogle Scholar
  91. Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86:589–598CrossRefPubMedGoogle Scholar
  92. Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397:707–710PubMedCrossRefGoogle Scholar
  93. Porter FD, Drago J, Xu Y, Cheema SS, Wassif C (1997) Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 124:2935–2944PubMedGoogle Scholar
  94. Puelles L (2001) Evolution of the nervous system, brain segmentation and forebrain development in amniotes. Brain Research Bulletin 55:695–710CrossRefPubMedGoogle Scholar
  95. Ragsdale CW, Grove EA (2001) Patterning the mammalian cerebral cortex. Curr Opin Neurobiol 11:50–58CrossRefPubMedGoogle Scholar
  96. Regnier CH, Masson R, Kedinger V, Textoris J, Stoll I (2002) Impaired neural tube closure, axial skeleton malformations, and tracheal ring disruption in TRAF4-deficient mice. Proc Natl Acad Sci USA 99:5585–5590CrossRefPubMedGoogle Scholar
  97. Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F (1993) Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364:717–721CrossRefPubMedGoogle Scholar
  98. Rhinn M, Brand M (2001) The midbrain-hindbrain boundary organizer. Curr Opin Neurobiol 11:34–42CrossRefPubMedGoogle Scholar
  99. Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76:761–775CrossRefPubMedGoogle Scholar
  100. Roelink H, Porter JA, Chiang C, Tanabe Y, Chang DT (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of Sonic hedgehog autoproteolysis. Cell 81:445–455CrossRefPubMedGoogle Scholar
  101. Rubenstein JL, Martinez S, Shimamura K, Puelles L (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266:578–580PubMedCrossRefGoogle Scholar
  102. Rubenstein JL, Rakic P (1999) Genetic control of cortical development. Cereb Cortex 9:521–523PubMedCrossRefGoogle Scholar
  103. Rubenstein JL, Anderson S, Shi L, Miyashita-Lin E, Bulfone A, Hevner R (1999) Genetic control of cortical regionalization and connectivity. Cereb Cortex 9:524–532PubMedCrossRefGoogle Scholar
  104. Sabapathy K, Jochum W, Hochedlinger K, Chang L, Karin M, Wagner EF (1999) Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev 89:115–124CrossRefPubMedGoogle Scholar
  105. Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T (1995) A subset of p53-deficient embryos exhibit exeneephaly. Nat Genet 10:175–180PubMedCrossRefGoogle Scholar
  106. Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790CrossRefPubMedGoogle Scholar
  107. Sasai Y, Lu B, Steinbeisser H, De Robertis EM (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376:249–253CrossRefPubMedGoogle Scholar
  108. Sauer B (1993) Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods Enzymol 225:890–900PubMedCrossRefGoogle Scholar
  109. Schorle H, Meier P, Buchert M, Jaenisch R, Mitchell PJ (1996) Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381:235–238CrossRefPubMedGoogle Scholar
  110. Schwarz M, Alvarez-Bolado G, Dressler G, Urbanek P, Busslinger M, Gruss P (1999) Pax2/5 and Pax6 subdivide the early neural tube into three domains. Mech Dev 82:29–39CrossRefPubMedGoogle Scholar
  111. Shawlot W, Behringer RR (1995) Requirement for Lim1 in head-organizer function. Nature 374:425–430CrossRefPubMedGoogle Scholar
  112. Sheldon M, Rice DS, D’Arcangelo G, Yoneshima H, Nakajima K (1997) Scrambler and Yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730–733PubMedCrossRefGoogle Scholar
  113. Sheppard AM, Pearlman AL (1997) Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse. J Comp Neurol 378:173–179CrossRefPubMedGoogle Scholar
  114. Shimamura K, Rubenstein JL (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124:2709–2718PubMedGoogle Scholar
  115. Simeone A, Acampora D, Gulisano M, Stornaiuolo A, Boncinelli E (1992) Nested expression domains of four homeobox genes in developing rostral brain. Nature 358:687–690CrossRefPubMedGoogle Scholar
  116. Sisodiya SM, Free SL, Williamson KA, Mitchell TN, Willis C (2001) PAX6 haploinsufficiency causes cerebral malformation and olfactory dysfunction in humans. Nat Genet 28:214–246CrossRefPubMedGoogle Scholar
  117. Smithells RW, Sheppard S, Schorah CJ, Seiler MJ, Nevin NC (1981) Apparent prevention of neural tube defects by periconceptional vitamin supplementation. Arch Dis Child 56:911–918PubMedCrossRefGoogle Scholar
  118. Spemann H, Mangold H (1924) Über die Induktion von Embryoanlagen durch Implantation artfremder Organisatoren. Roux Arch Entwicklungsmech 100:599–638Google Scholar
  119. Stoykova A, Gruss P (1994) Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J Neurosci 14:1395–1412PubMedGoogle Scholar
  120. Stoykova A, Götz M, Gruss P, Price J (1997) Pax6-dependent regulation of adhesive patterning, R-cadherin expression and boundary formation in developing forebrain. Development 124:3765–3777PubMedGoogle Scholar
  121. Stumpo DJ, Eddy RL Jr, Haley LL, Sait S, Shows TB (1998) Promoter sequence, expression, and fine chromosomal mapping of the human gene (MLP) encoding the MARCKS-like protein: identification of neighboring and linked polymorphic loci for MLP and MACS and use in the evaluation of human neural tube defects. Genomics 49:253–264CrossRefPubMedGoogle Scholar
  122. Thomas P, Beddington R (1996) Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 6:1487–1496CrossRefPubMedGoogle Scholar
  123. Tole S, Goudreau G, Assimacopoulos S, Grove EA (2000) Emx2 is required for growth of the hippocampus but not for hippocampal field specification. J Neurosci 20:2618–2625PubMedGoogle Scholar
  124. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701CrossRefPubMedGoogle Scholar
  125. Tuttle R, Nakagawa Y, Johnson JE, O’Leary DD (1999) Defects in thalamocortical axon pathfinding correlate with altered cell domains in Mash-1-deficient mice. Development 126:1903–1916PubMedGoogle Scholar
  126. Urbanek P, Wang ZQ, Fetka I, Wagner EF, Busslinger M (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79:901–912CrossRefPubMedGoogle Scholar
  127. Varlet I, Collignon J, Robertson EJ (1997) Nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development 124:1033–1044PubMedGoogle Scholar
  128. Warren N, Caric D, Pratt T, Clausen JA, Asavaritikrai P (1999) The transcription factor, Pax6, is required for cell proliferation and differentiation in the developing cerebral cortex. Cereb Cortex 9:627–635CrossRefPubMedGoogle Scholar
  129. Wassarman KM, Lewandoski M, Campbell K, Joyner AL, Rubenstein JL (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124:2923–2934PubMedGoogle Scholar
  130. Wessely O, De Robertis EM (2002) Neural plate patterning by secreted signals. Neuron 33:489–491CrossRefPubMedGoogle Scholar
  131. Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120:2065–2075PubMedGoogle Scholar
  132. Xuan S, Baptista CA, Balas G, Tao W, Soares VC, Lai E (1995) Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14:1141–1152CrossRefPubMedGoogle Scholar
  133. Yoshida M, Suda Y, Matsuo I, Miyamoto N, Takeda N, Kuratani S, Aizawa S (1997) Emxl and Emx2 functions in development of dorsal telencephalon. Development 124:101–111PubMedGoogle Scholar
  134. Zimmerman LB, De Jesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86:599–606CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Patrick Collombat
    • 1
  • Ahmed Mansouri
    • 1
  1. 1.Max-Planck-Institut für Biophysikalische Chemie, Abteilung Molekulare ZellbiologieAG Molekulare ZelldifferenzierungGöttingen

Personalised recommendations