Advertisement

Fetale Programmierung und funktioneile Teratologie

  • Andreas Plagemann
Chapter
Part of the Molekulare Medizin book series (MOLMED)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.3.6 Literatur

  1. Aerts L, Van Assche FA (1979) Is gestational diabetes an acquired condition? J Dev Physiol 1:219–225PubMedGoogle Scholar
  2. Aerts L, Holemans K, Van Assche FA (1990) Maternal diabetes during pregnancy: consequences for the offspring. Diabetes Metab Rev 6:147–167PubMedCrossRefGoogle Scholar
  3. Andria ML, Simon EJ (1999) Localization of promotor elements in the human mu-opioid receptor gene and regulation by DNA methylation. Mol Brain Res 70:54–65CrossRefPubMedGoogle Scholar
  4. Barker DJP (1998) In utero programming of chronic disease. Clinical Science 95:115–128CrossRefPubMedGoogle Scholar
  5. Bergmann KE, Mensink GB (1999) Körpermaße und Übergewicht. Gesundheitswesen 61:115–120Google Scholar
  6. Bergmann RL, Bergmann KE, Eisenberg A (1984) Offspring of diabetic mothers have a higher risk for childhood overweight than offspring of diabetic fathers. Nutr Res 4:545–552Google Scholar
  7. Bernard C (1849) Chiens rendu diabeétiques. Compt Rend Soc Biol 1:60Google Scholar
  8. Bernardis LL, Bellinger LL (1993) The lateral hypothalamic area revisited: neuroanatomy, body weight regulation, neuroendocrinology and metabolism. Neurosci Biobehav Rev 17:141–193CrossRefPubMedGoogle Scholar
  9. Bester TH (2000) The DNA methyltransferases of mammals. Hum Mol Gen 9:2395–2402Google Scholar
  10. Bhattacharya SK, Ramchandani S, Cervoni N, Szyf M (1999) A mammalian protein with specific demethylase activity for mCpG DNA. Nature 397:579–583PubMedGoogle Scholar
  11. Bird A (2002) DNA methylation patterns and epigenetic memory. Gen Dev 16:6–21Google Scholar
  12. Bird A, Wolffe AP (1999) Methylation-induced repression — belts, braces, and chromatin. Cell 99:451–454CrossRefPubMedGoogle Scholar
  13. Bottazzo GF, Bosi E, Todd J, Belfiore A, Pujol-Borvell R (1988) Inappropriate HLA class II expression on epithelial cells: basis for new Interpretation of HLA association in autoimmune endocrine disorders. In: Farid NR (ed) Immunogenetics of endocrine disorders. Liss, New York, pp 133–143Google Scholar
  14. Bottazzo GF, Bosi E, Bonifacio E, Mirakian R, Todd I, Pujol-Borrell R (1989) Pathogenesis of type I (insulin-dependent) diabetes: possible mechanisms of autoimmune damage. Br Med Bull 45:37–57PubMedGoogle Scholar
  15. Bray GA, Fisler J, York DA (1990) Neuroendocrine control of the development of obesity: understanding gained from studies of experimental animal models. Front Neuroendocrinol 12:128–181Google Scholar
  16. Bühling KJ, Dudenhausen JW (2000) Ein Risiko für Mutter und Kind. Berliner Ärzte 37:15–17Google Scholar
  17. Clark SJ, Harrison J, Frommer M (1995) CpNpG methylation in mammalian cells. Nature Gen 10:20–27Google Scholar
  18. Cooper DN, Krawczak M (1989) Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum Gen 83:181–188Google Scholar
  19. Corness JD, Burbach JP, Hökfelt T (1997) The rat galaningene promoter: response to members of the nuclear hormone receptor family, phorbol ester and forskolin. Mol Brain Res 47:11–23CrossRefPubMedGoogle Scholar
  20. Crowther NJ, Trusler J, Cameron N, Toman M, Gray IP (2000) Relation between weight gain and beta-cell secretory activity and non-esterified fatty aeid production in 7-year-old African children: results from the birth to ten study. Diabetologia 43:978–985CrossRefPubMedGoogle Scholar
  21. Csaba G (1984) The present State in the phylogeny and ontogeny of hormone receptors. Horm Metabol Res 16:329–335CrossRefGoogle Scholar
  22. Dabelea D, Knowler WC, Pettitt DJ (2000 a) Effect of diabetes in pregnancy on offspring: Follow-up research in the Pima Indians. J Matern Fetal Med 9:83–88CrossRefPubMedGoogle Scholar
  23. Dabelea D, Hanson RL, Lindsay RS, Pettitt DJ, Imperatore G, Gabir MM, Roumain J, et al (2000 b) Intrauterine exposure to diabetes conveys risks for Type II diabetes and obesity: a study of discordant sibships. Diabetes 49:2208–2211PubMedGoogle Scholar
  24. Dahri S, Snoeck A, Reusens-Billen B, Remacle C, Hoet JJ (1991) Islet function in offspring of mothers on low protein diet during gestation. Diabetes 40:115–120PubMedGoogle Scholar
  25. Davidowa H, Plagemann A (2000) Decreased inhibition by leptin of hypothalamic arcuate neurons in neonatally overfed young rats. NeuroReport 11:2795–2798PubMedGoogle Scholar
  26. Deutsche Diabetes-Gesellschaft (2000) Evidenzbasierte Diabetes-LeitlinienGoogle Scholar
  27. Dietz WH (1994) Critical periods in childhood for the development of obesity. Am J Clin Nutr 59:955–959PubMedGoogle Scholar
  28. Dörner G (1974) Problems and terminology of functional teratology. Acta Biol Med Germ 34:1093–1095Google Scholar
  29. Dörner G (1975) Perinatal hormone levels and brain organization. In: Stumpf W, Grant LD (eds) Anatomical neuroendocrinology. Karger, Basel, pp 245–252Google Scholar
  30. Dörner G (1976) Hormones and brain differentiation. Elsevier, AmsterdamGoogle Scholar
  31. Dörner G (1989) Hormone-dependent brain development and neuroendocrine prophylaxis. Exp Clin Endocrinol 94:4–22PubMedGoogle Scholar
  32. Dörner G, Mohnike A (1976) Further evidence for a predominantly maternal transmission of maturity-onset type diabetes. Endokrinologie 68:121–124PubMedGoogle Scholar
  33. Dörner G, Mohnike A (1977) Zur Bedeutung der perinatalen Überernährung für die Pathogenese der Fettsucht und des Diabetes mellitus. Dtsch Gesundheitsw 32:2325–2327Google Scholar
  34. Dörner G, Plagemann A (1994) Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm Metab Res 26:213–221PubMedGoogle Scholar
  35. Dörner G, Grychtolik H, Julitz M (1977) Überernährung in den ersten drei Lebensmonaten als entscheidender Risikofaktor für die Entwicklung von Fettsucht und ihrer Folgeerkrankungen. Dtsch Gesundheitsw 32:6–9Google Scholar
  36. Dörner G, Thoelke H, Mohnike A, Schneider H (1985) High food supply in perinatal life appears to favour the development of insulin-treated diabetes mellitus (ITDM) in later life. Exp Clin Endocrinol 85:1–6PubMedGoogle Scholar
  37. Dörner G, Plagemann A, Reinagel H (1987) Familial diabetes aggregation in type I diabetics: gestational diabetes an apparent risk factor for increased diabetes susceptibility in the offspring. Exp Clin Endocrinol 89:84–90PubMedGoogle Scholar
  38. Dörner G, Plagemann A, Rückert J, Götz F, Rohde W, Stahl F, Kürschner U, et al (1988) teratogenetic maternofetal transmission and prevention of diabetes susceptibility. Exp Clin Endocrinol 91:247–258PubMedGoogle Scholar
  39. Dörner G, Plagemann A, Neu A, Rosenbauer J (2000) Gestational diabetes as risk factor for type I childhood-onset diabetes in the offspring. Neuroendocrinol Lett 21:355–359PubMedGoogle Scholar
  40. Dubos R, Savage D, Schaedler R (1966) Biological Freudianism: lasting effects of early environmental influences. Pediatrics 38:789–800PubMedGoogle Scholar
  41. Eid EE (1970) Follow-up study of physical growth of children who had excessive weight gain in first six months of life. BMJ 2:74–76PubMedGoogle Scholar
  42. Eriksson JG, Forsén T, Winter PD, Osmond C, Barker DJP (1999) Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ 318:427–431PubMedGoogle Scholar
  43. Fewtrell MS, Doherty C, Cole TJ, Stafford M, Hales CN, Lucas A (2000) Effects of size at birth, gestational age and early growth in preterm infants on glucose and insulin concentrations at 9–12 years. Diabetologia 43:714–717CrossRefPubMedGoogle Scholar
  44. Forsén T, Eriksson JG, Tuomilhto J, Osmond C, Barker DJP (1999) Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. BMJ 319:1403–1407PubMedGoogle Scholar
  45. Francis DD, Meaney MJ (1999) Maternal care and the development of stress response. Curr Opin Neurobiol 9:128–134CrossRefPubMedGoogle Scholar
  46. Freinkel N (1980) Of pregnancy and progeny. Banting lecture 1980. Diabetes 29:1023–1035PubMedGoogle Scholar
  47. Freinkel N, Metzger BE (1979) Pregnancy as a tissue culture experience: the critical implications of maternal metabolism for fetal development. In: Pregnancy Metabolism, Diabetes, and the Fetus. Ciba Foundation Symposium 63. Excerpta Medica, Amsterdam, pp 3–23Google Scholar
  48. Fukuda H, Noguchi T, Iritani N (2001) Transcriptional regulation of insulin receptor gene promoter in rat hepatocytes. Biochem Biophys Res Commun 280:1274–1278PubMedGoogle Scholar
  49. Garofano A, Czernichow P, Bréant B (1999) Effect of aging on beta-cell mass and function in rats malnourished during the perinatal period. Diabetologia 42:711–718CrossRefPubMedGoogle Scholar
  50. Götz F, Dörner G, Malz U, Rohde W, Stahl F, Poppe I, Schulze M, et al (1993) Short-and long-term effects of perinatal interleukin-lβ-application in rats. Neuroendocrinology 58:344–351PubMedGoogle Scholar
  51. Gray IP, Cooper PA, Cory BJ, Toman M, Crowther NJ (2002) The intrauterine environment is a strong determinant of glucose tolerance during the neonatal period, even in prematurity. J Clin Endocrinol Metab 87:4252–4256CrossRefPubMedGoogle Scholar
  52. Grote E (1981) The CNS control of glucose metabolism. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  53. Hales CN, Barker DJP (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35:595–601CrossRefPubMedGoogle Scholar
  54. Hales CN, Desai M, Ozanne SE (1997) The thrifty phenotype hypothesis: how does it look after 5 years? Diabet Med 14:189–195CrossRefPubMedGoogle Scholar
  55. Hanefeld M, Leonhardt W (1980) Das metabolische Syndrom. Dtsch Gesundheitsw 36:545–551Google Scholar
  56. Hoet JJ, Ozanne S, Reusens B (2000) Influences of pre-and postnatal nutritional exposures on vascular/endocrine systems in animals. Environ Health Perspect 108(Suppl 3):563–568PubMedGoogle Scholar
  57. Huizinga CT, Oudejans CB, Delemarre-van de Waal HA (2001) Persistent changes in somatostatin and neuropeptide Y mRNA levels but not in growth hormone-releasing hormone mRNA levels in adult rats after intrauterine growth retardation. J Endocrinol 168:273–281CrossRefPubMedGoogle Scholar
  58. Jaenisch R (1997) DNA methylation and imprinting: why bother? Trends Gen 13:323–329Google Scholar
  59. Jones PL, Veesnstra GC, Wade PA, Vermaak D, Kass SU, Landsberger N, et al (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Gen 19:187–191Google Scholar
  60. Kalra SP, Kalra PS (1996) Nutritional infertility: the role of the interconnected hypothalamic neuropeptide Y-galanin-opioid network. Front Neuroendocrinol 17:371–401PubMedGoogle Scholar
  61. Kramer MS, Barr RG, Leduc DG, Boisjoly C, Pless IB (1985) Infant determinants of childhood weight and adiposity. J Pediatr 107:104–107PubMedGoogle Scholar
  62. Lamarck JB (1809) Philosophie zoologiques. ParisGoogle Scholar
  63. Larsen F, Gundersen G, Lopez R, Prydz H (1992) CpG islands as gene markers in the human genome. Genomics 13:1095–1097CrossRefPubMedGoogle Scholar
  64. Leibowitz SF, Akabayashi A, Wang J (1998) Obesity on a high-fat diet: role of hypothalamic galanin in neurons of the anterior paraventricular nucleus projecting to the median eminence. J Neurosci 18:2709–2719PubMedGoogle Scholar
  65. Levin BE (2000) The obesity epidemic: metabolic imprinting on genetically susceptible neural circuits. Obes Res 8:342–347PubMedCrossRefGoogle Scholar
  66. Lorenz K (1935) Der Kumpan in der Umwelt des Vogels: der Artgenosse als auslösendes Moment sozialer Verhaltensweisen. Journal für Ornithologie, S 83Google Scholar
  67. Lucas A (1991) Programming by early nutrition in man. In: The childhood environment and adult disease. Ciba Foundation Symposium 156. Wiley, Chichester, pp 38–55Google Scholar
  68. Lucas A, Fewtrell MS, Cole TJ (1999) Fetal origins of adult disease — the hypothesis revisited. BMJ 319:245–249PubMedGoogle Scholar
  69. Martorell R, Stein AD, Schroeder DG (2001) Early nutrition and later adiposity. J Nutr 131:874–880Google Scholar
  70. McCance DR, Pettitt DJ, Hanson RL, Jacobsson LT, Knowler WC, Bennett PH (1994) Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype? BMJ 308:942–945PubMedGoogle Scholar
  71. McEwen BS (1992) Steroid hormones: effects on brain development and function. Horm Res 37:1–10PubMedCrossRefGoogle Scholar
  72. Meaney MJ, Diorio J, Francis D, Widdowson J, LaPlante P, Caldji CH, Sharma S, et al (1996) Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Dev Neurosci 18:49–72PubMedGoogle Scholar
  73. Minth-Worby CA (1994) Transcriptional regulation of the human neuropeptide Y gene by nerve growth factor. J Biol Chem 269:15460–15468PubMedGoogle Scholar
  74. Moura AS, De Souza Caldeira Filho J, De Freitas MP, De Sa CC (1997) Insulin secretion impairment and insulin sensitivity improvement in adult rats undernourished during early lactation. Res Comm Mol Pathol Pharmacol 96:179–192Google Scholar
  75. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389PubMedGoogle Scholar
  76. Nerup J, Mandrup-Poulsen T, Molvig J, Helquist S, Wogensen L, Egeberg J (1988) Mechanisms of pancreatic β-cell destruction in type I diabetes. Diabetes Care 11(Suppl l):16–23PubMedGoogle Scholar
  77. Newell-Price J, King P, Clark AJ (2001) The CpG island promotor of the human proopiomelanocortin gene is methylated in nonexpressing normal tissue and tumors and represses expression. Mol Endocrinol 15:338–348CrossRefPubMedGoogle Scholar
  78. Oh W, Gelardi NL, Cha CJ (1991) The cross-generation effect of neonatal macrosomia in rat pups of streptozotocin-induced diabetes. Pediatr Res 29:606–610PubMedGoogle Scholar
  79. Ozanne SE, Wang CL, Dorling MW, Petry CJ (1999) Dissection of the metabolic actions of insulin in adipocytes from early growth-retarded male rats. J Endocrinol 162:313–319CrossRefPubMedGoogle Scholar
  80. Pedersen J (1977) The pregnant diabetic and her newborn. Munksgaard, CopenhagenGoogle Scholar
  81. Pedrazzi P, Cattaneo L, Valeriana L, Boschi S, Cocchi D, Zoli M (1998) Hypothalamic neuropeptide Y and galanin in overweight rats fed a Cafeteria diet. Peptides 19:157–165CrossRefPubMedGoogle Scholar
  82. Penicaud L, Cousin B, Leloup C, Atef N, Casteilla L, Ktorza A (1996) Changes in autonomic nervous system activity and consecutive hyperinsulinaemia: respective roles in the development of obesity in rodents. Diabetes Metab 22:15–24PubMedGoogle Scholar
  83. Petry CJ, Hales CN (1999) Intrauterine development and its relationship to type II diabetes mellitus. In: Hitman GA (ed) Type II diabetes: prediction and prevention. Wiley, Chichester, pp 153–168Google Scholar
  84. Petry CJ, Ozanne SE, Wang CL, Hales CN (1997) Early protein restriction and obesity independently induce hypertension in 1-year-old rats. Clin Sci 93:147–152PubMedGoogle Scholar
  85. Pettitt DJ, Baird HR, Aleck KA, Bennett PH, Knowler WC (1983) Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. New Engl J Med 308:242–245PubMedCrossRefGoogle Scholar
  86. Phillipps DI (1998) Birth weight and the future development of diabetes. Diabetes Care 21(Suppl 2):B150–B155Google Scholar
  87. Plagemann A, Harder T, Kohlhoff R, Rohde W, Dörner G (1997 a) Overweight and obesity in infants of mothers with long-term insulin-dependent diabetes or gestational diabetes. Int J Obesity 21:451–456Google Scholar
  88. Plagemann A, Harder T, Kohlhoff R, Rohde W, Dörner G (1997 b) Glucose tolerance and insulin secretion in infants of mothers with pregestational insulin-dependent diabetes mellitus or gestational diabetes. Diabetologia 40:1094–1100CrossRefPubMedGoogle Scholar
  89. Plagemann A, Staudt A, Götz F, Malz U, Rohde W, Rake A, Dörner G (1998 a) Long-term effects of early postnatally administered interleukin-1β on the hypothalamic-pituitary-adrenal (HPA) axis in rats. Endocrine Regulations 32:77–85PubMedGoogle Scholar
  90. Plagemann A, Harder T, Rake A, Melchior K, Rittel F, Rohde W, Dörner G (1998 b) Hypothalamic insulin and neuropeptide Y in the offspring of gestational diabetic mother rats. NeuroReport 9:4069–4073PubMedGoogle Scholar
  91. Plagemann A, Harder T, Janert U, Rake A, Rittel F, Rohde W, Dörner G (1999 a) Malformations of hypothalamic nuclei in hyperinsulinaemic offspring of gestational diabetic mother rats. Dev Neurosci 21:58–67CrossRefPubMedGoogle Scholar
  92. Plagemann A, Harder T, Melchior K, Rake A, Rohde W, Dörner G (1999 b) Elevation of hypothalamic neuropeptide Y-neurons in adult offspring of diabetic mother rats. NeuroReport 10:3211–3216PubMedGoogle Scholar
  93. Plagemann A, Harder T, Rake A, Voits M, Fink H, Rohde W, Dörner G (1999 c) Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome X-like alterations in adulthood of neonatally overfed rats. Brain Res 836:146–155CrossRefPubMedGoogle Scholar
  94. Plagemann A, Harder T, Rake A, Waas T, Melchior K, Ziska T, Rohde W, et al (1999 d) Observations on the orexigenic hypothalamic neuropeptide Y-system in neonatally overfed weanling rats. J Neuroendocrinol 11:541–546CrossRefPubMedGoogle Scholar
  95. Plagemann A, Rake A, Harder T, Melchior K, Rohde W, Dörner G (2000) Hypothalamic nuclei are malformed in weanling offspring of low-protein malnourished rat dams. J Nutr 130:2582–2590PubMedGoogle Scholar
  96. Ravelli GP, Stein ZA, Susser MW (1976) Obesity in young men after famine exposure in utero and early infancy. New Engl J Med 295:349–353PubMedCrossRefGoogle Scholar
  97. Razin A, Shemer R (1995) DNA methylation in early development. Hum Mol Gen 4:1751–1755PubMedGoogle Scholar
  98. Reaven GM (1988) Role of insulin resistance in human disease. Banting lecture 1988. Diabetes 37:1595–1607PubMedGoogle Scholar
  99. Rees WD, Hay SM, Brown DS, Antipatis C, Palmer RM (2000) Maternal protein deficiency causes hypermethylation of DNA in livers of rat fetuses. J Nutr 130:1821–1826PubMedGoogle Scholar
  100. Reul JM, Stec I, Wiegers GJ, Labeur MS, Linthorst AC, Arzt E, Holsboer F (1994) Prenatal immune challenge alters the hypothalamic-pituitary-adrenal axis in adult rats. J Clin Invest 93:2600–2607PubMedGoogle Scholar
  101. Saint-Hilaire EG (1837) Histoire geénérale et particulière des anomalies de l’organisation chez l’homme et les animaux ou traité de tératologie. BruxellesGoogle Scholar
  102. Silverman BL, Rizzo T, Green OC, Cho NH, Winter RJ, Ogata ES, Richards GE, et al (1991) Long-term prospective evaluation of offspring of diabetic mothers. Diabetes 40(Suppl 2):121–125PubMedGoogle Scholar
  103. Silverman BL, Metzger BE, Cho NH, Loeb CA (1995) Impaired glucose tolerance in adolescent offspring of diabetic mothers. Diabetes Care 18:611–617PubMedGoogle Scholar
  104. Silverman BL, Purdy LP, Metzger BE (1996) The intrauterine environment: implications for the offspring of diabetic mothers. Diabetes Rev 4:21–35Google Scholar
  105. Stettier NS, Zemel BS, Kumanyika S, Stallings VA (2002) Infant weight gain in a multicenter, cohort study. Pediatrics 109:194–199Google Scholar
  106. Strauss RS (1997) Effects of the intrauterine environment on childhood growth. Br Med Bull 53:81–95PubMedGoogle Scholar
  107. Strubbe JH, Steffens AB (1993) Neural control of insulin secretion. Horm Metab Res 25:507–512PubMedCrossRefGoogle Scholar
  108. Swaab DF, Boer GJ, Feenstra MG (1988) Concept of functional neuroteratology and the importance of neurochemistry. Prog Brain Res 73:3–13PubMedGoogle Scholar
  109. Szabo AJ (1983) CNS regulation of carbohydrate metabolism. Academic Press, New YorkGoogle Scholar
  110. Vanhala MJ, Vanhala PT, Keinänen-Kiukaanniemi SM, Kumpusalo EA, Takala JK (1999) Relative weight gain and obesity as a child predict metabolic syndrome as an adult. Int J Obesity 23:656–659Google Scholar
  111. Waterland RA, Garza C (1999) Potential mechanisms of metabolic imprinting that lead to chronic disease. Am J Clin Nutr 69:179–197PubMedGoogle Scholar
  112. Weiss PA (1988) Gestational diabetes: a survey and the Graz approach to diagnosis and therapy. In: Weiss PA, Coustan DR (eds) Gestational diabetes. Springer, Berlin Heidelberg New York Tokyo, pp 1–58Google Scholar
  113. Weiss PA, Scholz HS, Haas J, Tamussino KF, Seissler J, Borkenstein MH (2000) Long-term follow-up of infants of mothers with type I Diabetes. Diabetes Care 23:905–911PubMedGoogle Scholar
  114. Werboff J, Gottlieb JS (1963) Drugs in pregnancy: behavioral teratology. Obstet Gynecol Surv 18:420–423Google Scholar
  115. WHO (1994) Prevention of diabetes mellitusGoogle Scholar
  116. WHO (1995) ObesityGoogle Scholar
  117. Whitaker RC, Dietz WH (1998) Role of the prenatal environment in the development of obesity. J Pediatr 132:768–776PubMedGoogle Scholar
  118. Wilkin TJ (2001) The accelerator hypothesis: weight gain is the missing link between type I and type II diabetes. Diabetologia 44:914–922CrossRefPubMedGoogle Scholar
  119. Woods SC, Seeley RJ, Porte DJ, Schwartz MW (1998) Signals that regulate food intake and energy homeostasis. Science 280:1378–1383CrossRefPubMedGoogle Scholar
  120. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–431PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andreas Plagemann
    • 1
  1. 1.Campus Virchow-Klinikum Klinik für Geburtsmedizin Leiter „Experimentelle Geburtsmedizin“Charité — Universitätsmedizin BerlinBerlin

Personalised recommendations