Chromosome 17-linked Frontotemporal dementia with Ubiquitin-Positive, Tau-Negative Inclusions

  • Rosa Rademakers
  • Julie van der Zee
  • Samir Kumar-Singh
  • Bart Dermaut
  • Marc Cruts
  • Christine Van Broeckhoven
Conference paper
Part of the Research and Perspectives in Alzheimer's Disease book series (ALZHEIMER)


Familial forms of frontotemporal dementia (FTD) are in 10–43% of patients, caused by mutations in the gene encoding the microtubule associated protein tau (MAPT) located at chromosome 17q21. Neuropathologically, these patients are characterized by tau-positive depositions in brain. However, autosomal dominant forms of FTD without MAPT mutations have been reported, suggesting other tauopathy-related genetic defects. One such form is FTD linked to 17q21, with tau-negative but ubiquitine-positive neuronal inclusions or FTD-U. We previously reduced the candidate chromosomal region to 4.8 cM in a Dutch FTD-U family, 1083. A mutation in MAPT was excluded by genomic sequencing. More recently, we identified three Belgian FTD families of which two, DR2 and DR8, showed linkage to the 17q21 region. Both families shared a common haplotype in an 8.04 cM region, indicating that they are genetically related to a common founder. In the third family, DR7, we obtained an autopsy confirmation of the characteristic ubiquitin-positive, tau-negative neuronal inclusions. Currently, there are 11 FTD families linked to 17q21 that do not segregate a MAPT mutation, of which five are conclusively linked (LOD score > 3). Together the data suggest that FTD-U could represent an important subtype of FTD, and that identification of the underlying gene defect might significantly contribute to our understanding of the pathomechanism leading to neurodegeneration in this dementia subtype.


Amyotrophic Lateral Sclerosis Frontotemporal Dementia Cytoplasmic Neuronal Inclusion Neuronal Inclusion Obligate Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basun H, Almkvist O, Axelman K, Brun A, Campbell TA, Collinge J, Forsell C, Froelich S, Wahlund LO, Wetterberg L, Lannfelt L (1997) Clinical characteristics of a chromosome 17-linked rapidly progressive familial frontotemporal dementia. Arch Neurol 54: 539–544.PubMedGoogle Scholar
  2. Benson G (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27: 573–580.CrossRefPubMedGoogle Scholar
  3. Benussi L, Signorini S, Ghidoni R, Alberici A, Barbiero L, Feudatari E, Gigola L, Nicosia F, Paterlini A, Strom T, Bettecken T, Meitinger T, Binetti G (2004) Identification of genetic loci associated with familial frontotemporal dementia. Neurobiol Aging 25: P4–149.CrossRefGoogle Scholar
  4. Bird TD, Wijsman EM, Nochlin D, Leehey M, Sumi SM, Payami H, Poorkaj P, Nemens E, Rafkind M, and Schellenberg GD (1997) Chromosome 17 and hereditary dementia: linkage studies in three non-Alzheimer families and kindreds with late-onset FAD. Neurology 48: 949–954.PubMedGoogle Scholar
  5. Brown J, Ashworth A, Gydesen S, Sorensen A, Rossor M, Hardy J, Collinge J (1995) Familial nonspecific dementia maps to chromosome 3. Human Mol Genet 4: 1625–1628.Google Scholar
  6. Cruts M, van Duijn CM, Backhovens H, Van den BM, Wehnert A, Serneels S, Sherrington R, Hutton M, Hardy J, George-Hyslop PH, Hofman A, Van Broeckhoven C (1998). Estimation of the genetic contribution of presenilin-1 and-2 mutations in a population-based study of presenile Alzheimer disease. Human Mol Genet 7: 43–51.CrossRefGoogle Scholar
  7. Curcio SA, Kawarai T, Paterson AD, Maletta RG, Puccio G, Perri M, Di Natale M, Palermo S, Foncin JF, Hyslop PH, Bruni AC (2002) A large Calabrian kindred segregating frontotemporal dementia. J Neurol 249: 911–922.CrossRefPubMedGoogle Scholar
  8. Dermaut B, Croes EA, Rademakers R, Van den BM, Cruts M, Hofman A, van Duijn CM, Van Broeckhoven C (2003) PRNP Val129 homozygosity increases risk for earl-onset Alzheimer's disease. Ann Neurol 53: 409–412.CrossRefPubMedGoogle Scholar
  9. Froelich FS, Axelman P, Almkvist A, Basun H, Lannfelt L (2003) Extended investigation of tau and mutation screening of other candidate genes on chromosome 17q21 in a Swedish FTDP-17 family. Am J Med Genet 121B: 112–118.CrossRefGoogle Scholar
  10. Froelich S, Basun H, Forsell C, Lilius L, Axelman K, Andreadis A, Lannfelt L (1997) Mapping of a disease locus for familial rapidly progressive frontotemporal dementia to chromosome 17q12–21. Am J Med Genet 74: 380–385.CrossRefPubMedGoogle Scholar
  11. Hodges JR, Davies R, Xuereb J, Kril J, Halliday G (2003) Survival in frontotemporal dementia. Neurology 61: 349–354.PubMedGoogle Scholar
  12. Hodges JR, Davies RR, Xuereb JH, Casey B, Broe M, Bak TH, Kril JJ, Halliday GM (2004) Clinicopathological correlates in frontotemporal dementia. Ann Neurol 56: 399–406.CrossRefPubMedGoogle Scholar
  13. Hofman A, Schulte W, Tanja TA, van Duijn CM, Haaxma R, Lameris AJ, Otten VM, Saan RJ (1989) History of dementia and Parkinson's disease in 1st-degree relatives of patients with Alzheimer's disease. Neurology 39: 1589–1592.PubMedGoogle Scholar
  14. Hosler BA, Siddique T, Sapp PC, Sailor W, Huang MC, Hossain A, Daube JR, Nance M, Fan C, Kaplan J, Hung WY, McKenna-Yasek D, Haines JL, Pericak-Vance MA, Horvitz HR, Brown RH, Jr. (2000) Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. JAMA 284: 1664–1669.CrossRefPubMedGoogle Scholar
  15. Houlden H, Baker M, Adamson J, Grover A, Waring S, Dickson D, Lynch T, Boeve B, Petersen RC, Pickering-Brown S, Owen F, Neary D, Craufurd D, Snowden J, Mann D, Hutton M (1999) Frequency of tau mutations in three series of non-Alzheimer's degenerative dementia. Ann Neurol 46: 243–248.CrossRefPubMedGoogle Scholar
  16. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JBJ, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393: 702–705.CrossRefPubMedGoogle Scholar
  17. Josephs KA, Holton JL, Rossor MN, Godbolt AK, Ozawa T, Strand K, Khan N, Al Sarraj S, Revesz T (2004) Frontotemporal lobar degeneration and ubiquitin immunohistochemistry. Neuropathol Appl Neurobiol 30: 369–373.CrossRefPubMedGoogle Scholar
  18. Kertesz A, Kawarai T, Rogaeva E, George-Hyslop P, Poorkaj P, Bird TD, Munoz DG (2000) Familial frontotemporal dementia with ubiquitin-positive, tau-negative inclusions. Neurology 54: 818–827.PubMedGoogle Scholar
  19. Lathrop GM, Lalouel JM, Julier C, Ott J (1985) Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am J Hum Genet 37: 482–498.PubMedGoogle Scholar
  20. Lendon CL, Lynch T, Norton J, McKeel DW, Jr., Busfield F, Craddock N, Chakraverty S, Gopalakrishnan G, Shears SD, Grimmett W, Wilhelmsen KC, Hansen L, Morris JC, Goate AM (1998) Hereditary dysphasic disinhibition dementia: a frontotemporal dementia linked to 17q21–22. Neurology 50: 1546–1555.PubMedGoogle Scholar
  21. Lipton AM, White CL, III, Bigio EH (2004) Frontotemporal lobar degeneration with motor neuron disease-type inclusions predominates in 76 cases of frontotemporal degeneration. Acta Neuropathol (Berl).Google Scholar
  22. Mackenzie IR, Feldman H (2004) Neuronal intranuclear inclusions distinguish familial FTD-MND type from sporadic cases. Dement Geriatr Cogn Disord 17: 333–336.CrossRefPubMedGoogle Scholar
  23. McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol 58: 1803–1809.CrossRefPubMedGoogle Scholar
  24. Morris HR, Khan MN, Janssen JC, Brown JM, Perez-Tur J, Baker M, Ozansoy M, Hardy J, Hutton M, Wood NW, Lees AJ, Revesz T, Lantos P, Rossor MN (2001) The genetic and pathological classification of familial frontotemporal dementia. Arch Neurol 58: 1813–1816.CrossRefPubMedGoogle Scholar
  25. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51: 1546–1554.PubMedGoogle Scholar
  26. Ott J (1989) Computer-simulation methods in human linkage analysis. Proc Natl Acad Sci USA 86: 4175–4178.PubMedGoogle Scholar
  27. Paviour DC, Lees AJ, Josephs KA, Ozawa T, Ganguly M, Strand C, Godbolt A, Howard RS, Revesz T, Holton JL (2004) Frontotemporal lobar degeneration with ubiquitin-only-immunoreactive neuronal changes: broadening the clinical picture to include progressive supranuclear palsy. Brain. 127: 2441–2451CrossRefPubMedGoogle Scholar
  28. Pickering-Brown S, Baker M, Adamson J, Melquist S, Nyborg A, Lindholm C, Hutton M, Mackenzie I (2004) Familial frontotemporal dementia with neuronal intranuclear inclusions is linked to chromosome 17. Soc Neurosci Abstr.97.9.Google Scholar
  29. Poorkaj P, Grossman M, Steinbart E, Payami H, Sadovnick A, Nochlin D, Tabira T, Trojanowski JQ, Borson S, Galasko D, Reich S, Quinn B, Schellenberg G, Bird TD (2001) Frequency of tau gene mutations in familial and sporadic cases of non-Alzheimer dementia. Arch Neurol 58: 383–387.CrossRefPubMedGoogle Scholar
  30. Rademakers R, Cruts M, Dermaut B, Sleegers K, Rosso SM, Van den BM, Backhovens H, Van Swieten J, van Duijn CM, Van Broeckhoven C (2002) Tau negative frontal lobe dementia at 17q21: significant finemapping of the candidate region to a 4.8 cM interval. Mol Psychiatr 7: 1064–1074.CrossRefPubMedGoogle Scholar
  31. Rademakers R, Cruts M, Van Broeckhoven C (2004a) The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Human Mutat 24: 277–295.CrossRefGoogle Scholar
  32. Rademakers R, van der Zee, J, Bogaerts V, Van den Bossche D, Backhovens H, De Pooter T, Bel Kacem S, van Duijn C, Del-Favero J, Van Broeckhoven C (2004b) Genomic sequencing of MAPT provides an extended SNP map and identifies >30 H1 subhaplotypes. Neurobiol Aging 25: P4–154.CrossRefGoogle Scholar
  33. Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58: 1615–1621.PubMedGoogle Scholar
  34. Rizzu P, van Swieten JC, Joosse M, Hasegawa M, Stevens M, Tibben A, Niermeijer MF, Hillebrand M, Ravid R, Oostra BA, Goedert M, van Duijn CM, Heutink P (1999) High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands. Am J Human Genet 64: 414–421.CrossRefGoogle Scholar
  35. Roks G, Dermaut B, Heutink P, Julliams A, Backhovens H, Van de BM, Serneels S, Hofman A, Van Broeckhoven C, van Duijn CM, Cruts M (1999) Mutation screening of the tau gene in patients with early-onset Alzheimer's disease. Neurosci Lett 277: 137–139.CrossRefPubMedGoogle Scholar
  36. Rosso SM, Donker KL, Baks T, Joosse M, de K, I, Pijnenburg Y, de Jong D, Dooijes D, Kamphorst W, Ravid R, Niermeijer MF, Verheij F, Kremer HP, Scheltens P, van Duijn CM, Heutink P, van Swieten JC (2003) Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain 126: 2016–2022.CrossRefPubMedGoogle Scholar
  37. Rosso SM, Kamphorst W, de Graaf B, Willemsen R, Ravid R, Niermeijer MF, Spillantini MG, Heutink P, van Swieten JC (2001) Familial frontotemporal dementia with ubiquitin-positive inclusions is linked to chromosome 17q21–22. Brain 124: 1948–1957.CrossRefPubMedGoogle Scholar
  38. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Meth Mol Biol 132: 365–386.Google Scholar
  39. Stevens M, van Duijn CM, Kamphorst W, de Knijff P, Heutink P, van Gool WA, Scheltens P, Ravid R, Oostra BA, Niermeijer MF, van Swieten JC (1998) Familial aggregation in frontotemporal dementia. Neurology 50: 1541–1545.PubMedGoogle Scholar
  40. van Duijn CM, Hendriks L, Farrer LA, Backhovens H, Cruts M, Wehnert A, Hofman A, Van Broeckhoven C (1994) A population-based study of familial Alzheimer disease: linkage to chromosomes 14, 19, and 21. Am J Human Genet 55: 714–727.Google Scholar
  41. Weckx S, De Rijk P, Van Broeckhoven C, Del Favero J (2004a). SNPbox, a modular software package for large scale primer design. Bioinformatics doi: 10.1093Google Scholar
  42. Weckx S, De Rijk P, Van Broeckhoven C, Del Favero J (2004b) SNPbox: web-based high-throughput primer design from gene to genome. Nucleic Acids Res 32: W170–W172.CrossRefPubMedGoogle Scholar
  43. Weeks, Ott J, Lathrop GM (1990) SLINK: a general simulation program for linkage analysis. Am J Human Genet 47: A204.Google Scholar
  44. Zhukareva V, Vogelsberg-Ragaglia V, Van Deerlin VM, Bruce J, Shuck T, Grossman M, Clark CM, Arnold SE, Masliah E, Galasko D, Trojanowski JQ, Lee VM (2001) Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia. Ann Neurol 49: 165–175.CrossRefPubMedGoogle Scholar
  45. Zhukareva V, Sundarraj S, Mann D, Sjogren M, Blenow K, Clark CM, McKeel DW, Goate A, Lippa CF, Vonsattel JP, Growdon JH, Trojanowski JQ, Lee VM (2003) Selective reduction of soluble tau proteins in sporadic and familial frontotemporal dementias: an international follow-up study. Acta Neuropathol (Berl) 105: 469–476.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rosa Rademakers
    • 1
  • Julie van der Zee
    • 1
  • Samir Kumar-Singh
    • 1
  • Bart Dermaut
    • 1
  • Marc Cruts
    • 1
  • Christine Van Broeckhoven
    • 1
  1. 1.Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology (VIB)University of Antwerp (UA)AntwerpenBelgium

Personalised recommendations