Strong Interaction Phenomena


Mach Number Wall Pressure Hypersonic Flow Blunt Body Flight Vehicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Hirschel. “Present and Future Aerodynamic Process Technologies at DASA Military Aircraft”. ERCOFTAC Industrial Technology Topic Meeting, Florence, Italy, 1999.Google Scholar
  2. 2.
    E. H. Hirschel. “Evaluation of Results of Boundary-Layer Calculations with Regard to Design Aerodynamics”. AGARD R-741, 1986, pp. 5-1 to 5-29.Google Scholar
  3. 3.
    K. Oswatitsch. “Die Ablösebedingungen von Grenzschichten”. H. Görtler (ed.), Boundary-Layer Research. Springer, Berlin/Göttingen/Heidelberg, 1958, pp. 357–367. Also: “The Separation Conditions of Boundary Layers”, NASA TTF-15200.Google Scholar
  4. 4.
    D. J. Peake, M. Tobak. “ Three-Dimensional Interaction and Vortical Flows with Emphasis on High Speeds”. AGARDograph 252, 1980.Google Scholar
  5. 5.
    E. H. Hirschel, W. Kordulla. “Shear Flow in Surface-Oriented Coordinates”. Notes on Numerical Fluid Mechanics, Vol. 4. Vieweg, Braunschweig/Wiesbaden, 1981.Google Scholar
  6. 6.
    A. Eberle, A. Rizzi, E. H. Hirschel. “Numerical Solutions of the Euler Equations for Steady Flow Problems”. Notes on Numerical Fluid Mechanics, NNFM 34. Vieweg, Braunschweig/Wiesbaden, 1992.Google Scholar
  7. 7.
    E. H. Hirschel. “ Vortex Flows: Some General Properties, and Modelling, Configurational and Manipulation Aspects”. AIAA-Paper 96-2514, 1996.Google Scholar
  8. 8.
    U. Dallmann, T. Herberg, H. Gebing, Wen-Han Su, Hong-Quan Zhang. “Flow-Field Diagnostics: Topological Flow Changes and Spatio-Temporal Flow Structures”. AIAA-Paper 95-0791, 1995.Google Scholar
  9. 9.
    H. J. Lugt. “Introduction to Vortex Theory”. Vortex Flow Press, Potomac, Maryland, 1996.Google Scholar
  10. 10.
    S. I. Green (ed.). “Fluid Vortices”. Kluwer Academic Publisher, 1995.Google Scholar
  11. 11.
    G. A. Bird. “The Effect of Noise and Vibration on Separated Flow Regions in Hypersonic Flow”. N. G. Barton, J. Periaux (eds.), Coupling of Fluids, Structures and Waves in Aeronautics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, NNFM 85, Springer, Berlin/Heidelberg/New York, 2003, pp. 1–9.Google Scholar
  12. 12.
    A. Henze, W. Schröder. “On the Influence of Thermal Boundary Conditions on Shock Boundary-Layer Interaction”. DGLR-Paper 2000-175, 2000.Google Scholar
  13. 13.
    A. Henze, W. Schröder, M. Bleilebens, H. Olivier. “Numerical and Experimental Investigations on the Influence of Thermal Boundary Conditions on Shock Boundary-Layer Interaction”. Computational Fluid Dynamics J., Vol. 12, No. 2, 2003, pp. 401–407.Google Scholar
  14. 14.
    D. A. Miller, R. M. Wood. “An Investigation of Leading Edge Vortices at Supersonic Speeds”. AIAA-Paper 83-1816, 1983.Google Scholar
  15. 15.
    W. Staudacher. “Die Beeinflussung von Vorderkantenwirbelsystemen schlanker Tragflügel (Influencing Leading-Edge Vortex Systems at Slender Wings)”. Doctoral Thesis, Universität Stuttgart, Germany, 1992.Google Scholar
  16. 16.
    M. Tobak, D. J. Peake. “Topology of Three-Dimensional Separated Flows”. Annual Review of Fluid Mechnics, Vol. 14, 1982, pp. 61–85.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ch. Mundt, F. Monnoyer, R. Höld. “Computational Simulation of the Aerothermodynamic Characteristics of the Reentry of HERMES”. AIAA-Paper 93-5069, 1993.Google Scholar
  18. 18.
    H. W. Liepmann, A. Roshko. “Elements of Gasdynamics”. John Wiley & Sons, New York/London/Sidney, 1966.Google Scholar
  19. 19.
    A. Durand, B. Chanetz, T. Pot, D. Cartigny, E. Széchényi A. Chpoun. “Experimental and Numerical Investigations on Mach Hysteresis”. Int. Symp. on Shock Waves 23, Forth Worth, USA, 2001.Google Scholar
  20. 20.
    M. S. Holden. “Viscous/Inviscid and Real-Gas Effects Associated with Hypersonic Vehicles”. AGARD R-813, 1986, pp. 4-1 to 4-81.Google Scholar
  21. 21.
    J. L. Stollery. “Some Viscous Interactions Affecting the Design of Hypersonic Intakes and Nozzles”. J. J. Bertin, J. Periaux, J. Ballmann (eds.), Advances in Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkhäuser, Boston, 1992, pp. 418–437.Google Scholar
  22. 22.
    J. Delery. “Shock/Shock Interference Phenomena in Hypersonic Flows”. Space Course 1993, Vol. 1, TU München, 1993, pp. 13-1 to 13-27.Google Scholar
  23. 23.
    D. S. Dolling. “Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next?”. AIAA J., Vol. 39, No. 8, 2001, pp. 1517–1531.Google Scholar
  24. 24.
    B. Edney. “Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies at Hypersonic Speeds in the Presence of an Impinging Shock”. FFA Rep. 115, 1968.Google Scholar
  25. 25.
    M. S. Holden. “Two-Dimensional Shock Wave Boundary-Layer Interactions in High-Speed Flows. Part II, Experimental Studies on Shock Wave Boundary-Layer Interactions”. AGARDograph No. 203, 1975, pp. 41–110.Google Scholar
  26. 26.
    M. Marini. “Analysis of Hypersonic Compression Ramp Laminar Flows under Sharp Leading Edge Conditions”. Aerospace Science and Technology, Vol. 5, 2001, pp. 257–271.MATHCrossRefGoogle Scholar
  27. 27.
    F. Grasso, M. Marini, G. Ranuzzi, S. Cuttica, B. Chanetz. “Shock-Wave/Turbulent Boundary-Layer Interactions in Nonequilibrium Flows”. AIAA J., Vol. 39, No. 11, 2001, pp. 2131–2140.Google Scholar
  28. 28.
    R. D. Neumann. “Defining the Areothermodynamic Methodology”. J. J. Bertin, R. Glowinski, J. Periaux (eds.), Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkhäuser, Boston, 1989, pp. 125–204.Google Scholar
  29. 29.
    J. M. Longo, R. Radespiel. “Flap Efficiency and Heating of a Winged Re-Entry Vehicle”. J. Spacecraft and Rockets, Vol. 33, No. 2, 1996, pp. 178–184.Google Scholar
  30. 30.
    T. Coratekin, J. van Keuk, J. Ballmann. “On the Performance of Upwind Schemes and Turbulence Models in Hypersonic Flows)”. AIAA J., Vol. 42, No. 5, 2004, pp. 945–957.Google Scholar
  31. 31.
    T. COratekin, A. Schubert, J. Ballmann. “Assessment of Eddy Viscosity Models in 2D and 3D Shock/Boundary-Layer Interactions”. W. Rodi, D. Lawrence (eds.), Engineering Turbulence Modelling and Experiments 4. Elsevier Science LTD., 1999, pp. 649–658.Google Scholar
  32. 32.
    G. T. Coleman, J. L. Stollery. “Heat Transfer from Hypersonic Turbulent Flow at a Wedge Compression Corner”. J. Fluid Mechanics, Vol. 56, 1972, pp. 741–752.CrossRefGoogle Scholar
  33. 33.
    G. Simeonides, W. Haase. “Experimental and Computational Investigations of Hypersonic Flow About Compression Corners”. J. Fluid Mechanics, Vol. 283, 1995, pp. 17-42.Google Scholar
  34. 34.
    S. Brück. “Ein Beitrag zur Beschreibung der Wechselwirkung von Stössen in reaktiven Hyperschallströmungen (Contribution to the Description of the Interaction of Shocks in Reacting Hypersonic Flows)”. Doctoral Thesis, Universität Stuttgart, Germany, 1998. Also DLR-FB 98-06, 1998.Google Scholar
  35. 35.
    G. Brenner. “Numerisene Simulation von Wechselwirkungen zwischen Stössen und Grenzschichten in chemisch reagierenden Hyperschallströmungen (Numerical Simulation of Interactions between Shocks and Boundary Layers in Chemically Reacting Hypersonic Flows)”. Doctoral Thesis, RWTH Aachen, Germany, 1994.Google Scholar
  36. 36.
    R. SChwane, J. Muylaert. “Design of the Validation Experiment Hyperboloid-Flare”. ESA Doc. YPA/1256/RS, ESTEC, 1992.Google Scholar
  37. 37.
    G. Brenner, T. Gerhold, K. Hannemann, D. Rues. “Numerical Simulation of Shock/Shock and Shock-Wave/Boundary-Layer Interactions in Hypersonic Flows”. Computers Fluids, Vol. 22, No. 4/5, 1993, pp. 427–439.CrossRefMATHGoogle Scholar
  38. 38.
    P. Perrier. “Concepts of Hypersonic Aircraft”. J. J. Bertin, J. Periaux, J. Ballmann (eds.), Advances in Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkhäuser, Boston, 1992, pp. 40–71.Google Scholar
  39. 39.
    J. Fischer. “ Selbstadaptive, lokale Netzverfeinerung für die numerische Simulation kompressibler, reibungsbehafteter Strömungen (Self-Adaptive Locai Grid Refinement for the Numerical Simulation of Compressible Viscous Flows)”. Doctoral Thesis, Universität Stuttgart, Germany, 1993.Google Scholar
  40. 40.
    A. R. Wieting, M. S. Holden. “Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge at Mach 6 and 8”. AIAA-Paper 87-1511, 1987.Google Scholar
  41. 41.
    G. H. Klopfer, H. C. Yee. “Viscous Hypersonic Shock-on-Shock Interaction on Blunt Cowl Lips”. AIAA-Paper 88-0233, 1988.Google Scholar
  42. 42.
    M. S. Holden, S. Sweet, J. Kolly, G. Smolinsky. “A Review of the Aerothermal Characteristics of Laminar, Transitional and Turbulent Shock/Shock Interaction Regions in Hypersonic Flows”. AIAA-Paper 98-0899, 1988.Google Scholar
  43. 43.
    D. D’Ambrosio. “Numerical Prediction of Laminar Shock/Shock Interactions in Hypersonic Flow”. J. Spacecraft and Rockets, Vol. 40, No. 2, 2003, pp. 153–161.MathSciNetGoogle Scholar
  44. 44.
    S. Brück. “ Investigation of Shock-Shock Interactions in Hypersonic Reentry”. B. Sturtevant, J. E. Shepherd, H. G. Hornung (eds.), Proc. 20th Intern. Symposium on Shock Waves, Vol. 1. World Scientific, Pasadena, 1995, pp. 215–220.Google Scholar
  45. 45.
    W. D. Hayes, R. F. Probstein. “Hypersonic Flow Theory”. Academic Press, New York/London, 1959.MATHGoogle Scholar
  46. 46.
    E. H. Hirschel. “Hypersonic Flow of a Dissociated Gas over a Fiat Plate”. L. G. Napolitano (ed.), Astronautical Research 1970. North-Holland Publication Co., Amsterdam, 1971, pp. 158-171.Google Scholar
  47. 47.
    E. H. Hirschel. “Influence of the Accommodation Coefficients on the Flow Variables in the Viscous Interaction Region of a Hypersonic Slip-Flow Boundary Layer”. Zeitschrift für Flugwissenschaften (ZFW), Vol. 20, No. 12, 1972, pp. 470–475.Google Scholar
  48. 48.
    S. Rudman, S. G. Rubin. “Hypersonic Viscous Flow over Slender Bodies Having Sharp Leading Edges”. Polytechnic Institute of Brooklyn, PIBAL Rep. No. 1018 (also AFOSR 67-1118), 1967.Google Scholar
  49. 49.
    M. Becker. “Die ebene Piatte in hypersonischer Strömung geringer Dichte. Experimentelle Untersuchungen im Stossformierungs-und Übergangsgebiet (The Flat Plate in Hypersonic Flow of Low Density. Experimental Investigations in the Shock Formation and the Transition Region”. Doctoral Thesis, RWTH Aachen, Germany, 1970, also DLR FB 70-79, 1970.Google Scholar
  50. 50.
    L. Talbot. “Criterion for Slip near the Leading Edge of a Fiat Plate in Hypersonic Flow”. AIAA J., Vol. 1, 1963, pp. 1169–1171.CrossRefGoogle Scholar
  51. 51.
    J. H. Kemp. “Hypersonic Viscous Interaction on Sharp and Blunt Inclined Plates”. AIAA-Paper 68-720, 1968.Google Scholar
  52. 52.
    D. R. Chapman, M. W. Rubesin. “Temperature and Velocity Profiles in the Compressible Laminar Boundary Layer with Arbitrary Distribution of Surface Temperature”. Journal of the Aeronautical Sciences, Vol. 16, 1949, pp. 547–565.MathSciNetGoogle Scholar
  53. 53.
    L. Lees, R. F. Probstein. “Hypersonic Viscous Flow over a Fiat Plate”. Report No. 195, Dept. of Aero. Eng., Princeton University, 1952.Google Scholar
  54. 54.
    L. Lees. “On the Boundary-Layer Equations in Hypersonic Flow and their Approximate Solutions”. Journal of the Aeronautical Sciences, Vol. 20, 1953, pp. 143–145.MATHMathSciNetGoogle Scholar
  55. 55.
    G. Koppenwallner. “Fundamentals of Hypersonics: Aerodynamics and Heat Transfer”. VKI Short Course Hypersonic Aerothermodynamics. Von Kármán Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium, LS 1984-01, 1984.Google Scholar
  56. 56.
    J. L. Stollery. “Viscous Interaction Effects and Re-Entry Aerothermodynamics: Theory and Experimental Results”. AGARD Lecture Series, LS 42, Vol. 1, 1972, pp. 10-1 to 10-28.Google Scholar
  57. 57.
    J. J. Bertin. “General Characterization of Hypersonic Flows”. J. J. Bertin, R. Glowinski, J. Periaux (eds.), Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkhäuser, Boston, 1989, pp. 1–65.Google Scholar
  58. 58.
    S. A. Schaaf, P. L. Chambré. “Flow of Rarefied Gases”. Princeton University Press, Princeton, N.J., 1961.MATHGoogle Scholar
  59. 59.
    V. P. Shidlovskiy. “Introduction to the Dynamics of Rarefied Gases”. American Elsevier Publ. Co., New York, 1967.Google Scholar
  60. 60.
    F. S. Sherman. “The Transition from Continuum to Molecular Flow”. Annual Review of Fluid Mechnics, Vol. 1, 1969, pp. 317–340.CrossRefGoogle Scholar
  61. 61.
    J. K. Harvey. “ Rarefied Gas Dynamics for Spacecraft”. J. J. Bertin, R. Glowinski, J. Periaux (eds.), Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkhäuser, Boston, 1989, pp. 483–509.Google Scholar
  62. 62.
    H. K. Cheng. “Numerical and Asymptotic Analysis of Hypersonic Slip Flows”. Proc. First Conference on Numerical Methods in Gas Dynamics. Novosibirsk, Russia, 1969.Google Scholar
  63. 63.
    M. Becker, F. Robben, R. Cattolica. “Velocity Distribution in Hypersonic Helium Flow near the Leading Edge of a Fiat Plate”. AIAA-Paper 73-0691, 1973.Google Scholar
  64. 64.
    E. H. Hirschel. “Untersuchung grenzschichtähnlicher Strömungen mit Druckgradienten bei grossen Anström-Machzahlen (Investigation of Boundary Layer Like Flows at Large Free-Stream Mach Numbers)”. Inaugural Thesis, RWTH Aachen, Germany, 1975, also DLR FB 76-22, 1976.Google Scholar
  65. 65.
    R. G. Deissler. “An Analysis of Second Order Slip Flow and Temperature Jump Conditions for Rarefied Gases”. Int. J. of Heat and Mass Transfer, Vol. 7, 1964, pp. 681–694.MATHCrossRefGoogle Scholar
  66. 66.
    G. Koppenwallner. “Rarefied Gas Dynamics”. J. J. Bertin, R. Glowinski, J. Periaux (eds.), Hypersonics, Vol 1, Defining the Hypersonic Environment. Birkhäuser, Boston, 1989, pp. 511–547.Google Scholar
  67. 67.
    R. T. Davis. “Numerical Solution of the Hypersonic Shock-Layer Equations”. AIAA J., Vol. 8, No. 5, 1970, pp. 843–851.MATHGoogle Scholar
  68. 68.
    W. L. Hendricks. “Slip Conditions with Wall Catalysis and Radiation for Multicomponent, Non-Equilibrium Gas Flow”. Technical Report NASA-TMX-64942, Marshall Space Flight Center, Huntsville, Alabama, 1974.Google Scholar
  69. 69.
    R. T. Davis. “Hypersonic Flow of a Chemically Reacting Binary Mixture past a Blunt Body”. AIAA-Paper 70-0805, 1970.Google Scholar
  70. 70.
    R. K. Höld. “Viscous Shock-Layer Equations for the Calculation of Reentry Aerothermodynamics”. Proc. First European Symposium on Aerothermodynamics for Space Vehicles. ESTEC, Noordwijk, The Netherlands, 1991, pp. 273–280.Google Scholar

Copyright information

© Springer Berlin Heidelberg 2005

Personalised recommendations