Advertisement

Laminar-Turbulent Transition and Turbulence in High-Speed Viscous Flow

Keywords

Boundary Layer Wall Shear Stress Transition Prediction Hypersonic Flow Linear Stability Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. D. Goodrich, S. M. Derry, J. J. Bertin. “Shuttle Orbiter Boundary-Layer Transition: A Comparison of Flight and Wind-Tunnel Data”. AIAA-Paper 83-0485, 1983.Google Scholar
  2. 2.
    E. H. Hirschel. “The Technology Development and Verification Concept of the German Hypersonics Technology Programme”. AGARD R-813, 1986, pp. 12-1 to 12-15.Google Scholar
  3. 3.
    J. F. Shea. “Report of the Defense Science Board Task Force on the National Aerospace Plane (NASP)”. Office of the Under Secretary of Defense for Acquisition, Washington, D. C., 1988.Google Scholar
  4. 4.
    R. M. Williams. “National Aerospace Plane: Technology for America’s Future”. Aerospace America, Vol. 24, No. 11, 1986, pp. 18–22.Google Scholar
  5. 5.
    W. Staudacher, J. Wimbauer. “Design Sensitivities of Airbreathing Hypersonic Vehicles”. AIAA-Paper 93-5099, 1993.Google Scholar
  6. 6.
    E. H. Hirschel. “Thermal Surface Effects in Aerothermodynamics”. Proc. Third European Symposium on Aerothermodynamics for Space Vehicles, Noordwijk, The Netherlands, November 24-26, 1998. ESA SP-426, 1999, pp. 17–31.Google Scholar
  7. 7.
    E. H. Hirschel. “Aerothermodynamic Phenomena and the Design of Atmospheric Hypersonic Airplanes”. J. J. Bertin, J. Periauz, J. Ballmann (eds.), Advances in Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkhäuser, Boston, 1992, pp. 1–39.Google Scholar
  8. 8.
    J. G. Marvin, T. J. Coakley. “Turbulence Modeling for Hypersonic Flows”. J. J. Bertin, J. Periaux, J. Ballmann (eds.), Advances in Hypersonics, Vol. 2, Modeling Hypersonic Flows. Birkhäuser, Boston, 1992, pp. 1–43.Google Scholar
  9. 9.
    D. C. Wilcox. “Turbulence Modelling for CFD”. DCW Industries, La Cañada, CAL., USA, 1998.Google Scholar
  10. 10.
    K. F. Stetson. “Hypersonic Boundary-Layer Transition”. J. J. Bertin, J. Periaux, J. Ballmann (eds.), Advances in Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkháuser, Boston, 1992, pp. 324–417.Google Scholar
  11. 11.
    M. V. Morkovin. “Critical Evaluation of Transition from Laminar to Turbulent Shear Layers with Emphasis on Hypersonically Travelling Bodies”. Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, AFFDL-TR-68-149, 1969.Google Scholar
  12. 12.
    E. Reshotko. “Boundary-Layer Stability and Transition”. Annual Review of Fluid Mechnics, Vol. 8, 1976, pp. 311–349.CrossRefGoogle Scholar
  13. 13.
    D. Arnal. “Laminar-Turbulent Transition Problems in Supersonic and Hypersonic Flows”. AGARD R-761, 1988, pp. 8-1 to 8-45.Google Scholar
  14. 14.
    P. J. Schmid, D. S. Henningson. “Stability and Transition in Shear Flows”. Springer-Verlag, New York/Berlin/Heidelberg, 2001.MATHGoogle Scholar
  15. 15.
    G. B. Schubauer, H. K. Skramstadt. “Laminar Boundary Layer Oscillations and Transition on a Flat Plate”. NACA Rep. 909.Google Scholar
  16. 16.
    J. M. Kendall. “Supersonic Boundary-Layer Stability Experiments” W. D. McCauley (ed.), Proceedings of Boundary Layer Transition Study Group Meeting. Air Force Report No. BSD-TR-67-213, Vol. II, 1967.Google Scholar
  17. 17.
    L. M. Mack. “Boundary-Layer Stability Theory”. JPL 900-277, 1969.Google Scholar
  18. 18.
    L. M. Mack. “Stability of the Compressible Laminar Boundary Layer According to a Direct Numerical Solution”. AGARDograph 97, Part I, 1965, pp. 329–362.Google Scholar
  19. 19.
    H. McDonald, R. W. Fish. “Practical Calculations of Transitional Boundary Layers”. Int. Journal of Heat and Mass Transfer, Vol. 16, No. 9, 1973, pp. 25–53.Google Scholar
  20. 20.
    H. Schlichting. “Boundary Layer Theory”. 7th edition, McGraw-Hill, New York, 1979.MATHGoogle Scholar
  21. 21.
    L. M. Mack. “Boundary-Layer Linear Stability Theory”. AGARD R-709, 1984, pp. 3-1 to 3-81.Google Scholar
  22. 22.
    D. Arnal. “Laminar Turbulent Transition”. T. K. S. Murthy (ed.), Computational Methods in Hypersonic Aerodynamics. Computational Mechanics Publications and Kluwer Academic Publishers, 1991, pp. 233–264.Google Scholar
  23. 23.
    M. Lang, O. Marxen, U. Rist, S. Wagner. “A Combined Numerical and Experimental Investigation of Transition in a Laminar Separation Bubble”. S. Wagner, M. Kloker, U. Rist (eds.), Recent Results in Laminar-Turbulent Transition. Notes Numerical Fluid Mechanics and Multidisciplinary Design, NNFM 86, Springer, Berlin/Heidelberg/New York, 2004, pp. 149–164.Google Scholar
  24. 24.
    L. Lees, C. C. Lin. “Investigation of the Stability of the Boundary Layer in a Compressible Fluid”. NACA TN 1115, 1946.Google Scholar
  25. 25.
    M. R. Malik, R. E. Spall. “On the Stability of Compressible Flow Past Axisymmetric Bodies”. High Technology Corporation, Hampton, VA, Report No. HTC-8905, 1989.Google Scholar
  26. 26.
    L. Lees. “The Stability of the Laminar Boundary Layer in a Compressible Fluid”. NACA TN 876, 1947.Google Scholar
  27. 27.
    E. Kufner. “Numerische Untersuchungen der Strömungsinstabilitäten an spitzen und stumpfen Kegeln bei hypersonischen Machzahlen (Numerical Investigations of the Flow Instabilities at Sharp and Blunt Cones at Hypersonic Mach Numbers)”. Doctoral Thesis, Universität Stuttgart, Germany, 1995.Google Scholar
  28. 28.
    P. Perrier. “Concepts of Hypersonic Aircraft”. J. J. Bertin, J. Periaux, J. Ballmann (eds.), Advances in Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkhäuser, Boston, 1992, pp. 40–71.Google Scholar
  29. 29.
    L. M. Mack. “Stability of Axisymmetric Boundary Layers on Sharp Cones at Hypersonic Mach Numbers”. AIAA-Paper 87-1413, 1987.Google Scholar
  30. 30.
    M. R. Malik. “Prediction and Control of Transition in Hypersonic Boundary Layers”. AIAA-Paper 87-1414, 1987.Google Scholar
  31. 31.
    A. Fezer, M. Kloker. “DNS of Transition Mechanisms at Mach 6.8-Flat Plate versus Sharp Cone”. D. E. Zeitoun, J. Periaux, J.-A. Désidéri, M. Marini (eds.), West East High Speed Flow Fields 2002. CIMNE Handbooks on Theory and Engineering Applications of Computational Methods, Barcelona, Spain, 2002.Google Scholar
  32. 32.
    E. Reshotko, M. M. S. Khan. “Stability of the Laminar Boundary Layer on a Blunted Plate in Supersonic Flow”. Proc. IUTAM Symposium Laminar-Turbulent Transition, Stuttgart, 1979. Springer, Berlin/Heidelberg/New York, 1980, pp. 181–200.Google Scholar
  33. 33.
    A. V. Fedorov. “Instability of the Entropy Layer on a Blunt Plate in Supersonic Gas Flow”. Journal Appl. Mech. Tech. Phys., Vol. 31, No. 5, 1990, pp. 722–728.CrossRefGoogle Scholar
  34. 34.
    G. Dietz, S. Hein. “Entropy-Layer Instabilities over a Blunted Flat Plate in Supersonic Flow”. Physics of Fluids, Vol. 11, No. 1, 1999, pp. 7–9.CrossRefMATHGoogle Scholar
  35. 35.
    G. Simeonides. “Correlation of Laminar-Turbulent Transition Data over Flat Plates in Supersonic/Hypersonic Flow Including Leading Edge Bluntness Effects”. Shock Waves, Vol. 12, No. 6, 2003, pp. 497–508.CrossRefGoogle Scholar
  36. 36.
    S. Hein. “Nonlinear Nonlocal Transition Analysis”. Doctoral Thesis, Universität Stuttgart, Germany, 2004.Google Scholar
  37. 37.
    G. B. Whitham. “The Navier-Stokes Equations of Motion”. L. Rosenhead, (ed.), Laminar Boundary Layers. Oxford Univ. Press, 1963, pp. 114–162.Google Scholar
  38. 38.
    V. Theofilis, A. V. Fedorov, D. Obrist, U. Ch. Dallmann. “The Extended Görtler-Hämmerlin Model for Linear Instability of Three-Dimensional Incompressible Swept Attachment-Line Boundary-Layer Flow”. J. Fluid Mechanics, Vol. 487, 2003, pp. 271–313.MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    F. P. Bertolotti. “On the Connection between Cross-Flow Vortices and Attachment-Line Instability”. H. F. Fasel, W. S. Saric (eds.), Laminar-Turbulent Transition. Springer, Berlin/Heidelberg/New York, 2000, pp. 625–630.Google Scholar
  40. 40.
    J. Sesterhenn, R. Friedrich. “Numerical Receptivity Study of an Attachment Boundary Layer in Hypersonic Flow”. J.-P, Dussauge, A. A. Chikhaoui (eds.), Aerodynamics and Thermochemistry of High Speed Flow. Euromech 440, Marseille, France, 2002.Google Scholar
  41. 41.
    N. A. Cumpsty, M. R. Head. “The Calculation of Three-Dimensional Turbulent Boundary Layers. Part II: Attachment Line Flow on an Infinite Swept Wing”. The Aeronautical Quarterly, Vol. XVIII, Part 2, 1967, pp. 99–113.Google Scholar
  42. 42.
    D. I. A. Poll. “Boundary Layer Transition on the Windward Face of Space Shuttle During Re-Entry”. AIAA-Paper 85-0899, 1985.Google Scholar
  43. 43.
    D. I. A. Poll. “Some Aspects of the Flow near a Swept Attachment Line with Particular Reference to Boundary Layer Transition”. Doctoral thesis, Cranfield, U. K., C of A Report 7805./L 1978.Google Scholar
  44. 44.
    P. R. Owen, D. G. Randall. “ Boundary Layer Transition on a Swept Back Wing”. R. A. E. TM 277, 1952, R. A. E. TM 330, 1953.Google Scholar
  45. 45.
    H. Bippes. “Basic Experiments on Transition in Three-Dimensional Boundary Layers Dominated by Crossflow Instability”. Progress in Aerospace Sciences, Elsevier Science Ltd, Oxford, Vol. 35, No. 3–4, 1999, pp. 363–412.Google Scholar
  46. 46.
    W. S. Saric, H. L. Reed, E. B. White. “Stability and Transition of Three-Dimensional Boundary Layers”. Annual Review of Fluid Mechnics, Vol. 35, 2003, pp. 413–440.MathSciNetCrossRefGoogle Scholar
  47. 47.
    D. I. A. Poll, Ph. Tran, D. Arnal. “Capabilities and Limitations of Available Transition Prediction Tools”. Aerospatiale TX/AP no. 114 779, 1994.Google Scholar
  48. 48.
    G. Simeonides, W. Haase. “Experimental and Computational Investigations of Hypersonic Flow About Compression Corners”. J. Fluid Mechanics, Vol. 283, 1995, pp. 17–42.CrossRefGoogle Scholar
  49. 49.
    G. Simeonides. “Laminar-Turbulent Transition Promotion in Regions of Shock Wave Boundary Layer Interaction”. ESA/ESTEC MSTP Code Validation Workshop. March 25–27, 1996, ESA/ESTEC EWP-1880, 1996.Google Scholar
  50. 50.
    A. Pagella, U. Rist, S. Wagner. “Numerical Investigations of Small-Amplitude Disturbances in a Boundary Layer with Impinging Shock Wave at M = 4.8”. Physics of Fluids, Vol. 14, No. 7, 2002, pp. 2088–2101.CrossRefGoogle Scholar
  51. 51.
    P. D. Germain, H. G. Hornung. “Transition on a Slender Cone in Hypervelocity Flow”. Exps. Fluids, Vol. 22, 1997, pp. 183–190.CrossRefGoogle Scholar
  52. 52.
    M. L. Hudson, N. Chokani, G. V. Candler. “Linear Stability of Hypersonic Flow in Thermochemical Non-Equilibrium”. AIAA J., Vol. 35, 1997, pp. 958–964.MATHGoogle Scholar
  53. 53.
    F. P. Bertolotti. “The Influence of Rotational and Vibrational Energy Relaxation on Boundary-Layer Stability”. J. Fluid Mechnics, Vol. 372, 1998, pp. 93–118.MATHMathSciNetCrossRefGoogle Scholar
  54. 54.
    N. N. “Boundary Layer Simulation and Control in Wind Tunnels”. AGARD-AR-224, 1988.Google Scholar
  55. 55.
    D. I. A. Poll. “Laminar-Turbulent Transition”. AGARD-AR-319, Vol. I, 1996, pp. 3-1 to 3-20.Google Scholar
  56. 56.
    H. W. Kipp, V. T. Helms. “Some Observations on the Occurance of Striation Heating”. AIAA-Paper 85-0324, 1985.Google Scholar
  57. 57.
    H. Görtler. “Über den Einfluß der Wandkrümmung auf die Entstehung der Turbulenz”. ZAMM, Vol. 20, 1940, pp. 138–147.MATHGoogle Scholar
  58. 58.
    H. W. Liepmann. “Investigation of Boundary-Layer Transition on Concave Walls”. NACA ACR 4J28, 1945.Google Scholar
  59. 59.
    I. Tani, Y. Aihara. “Görtler Vortices and Boundary-Layer Transition”. ZAMP, Vol. 20, 1969, pp. 609–618.Google Scholar
  60. 60.
    F. Maurer. “Three-Dimensional Effects in Shock-Separated Flow Regions Ahead of Lateral Control Jets Issuing from Slot Nozzles of Finite Length”. AGARD-CP-4, Part 2, 1966, pp. 605–634.Google Scholar
  61. 61.
    H. Lüdecke, E. Schülein. “Simulation of Streamwise Vortices on Turbulent Hypersonic Ramps”. Proc. Second International Conference on CFD, Sydney, Australia, 2002.Google Scholar
  62. 62.
    H. Lüdecke. “Untersuchung von Längswirbeln in abgelösten hypersonischen Strömungen (Investigation of Longitudinal Vortices in Separated Hypersonic Flows)”. Doctoral Thesis, Technische Universität Braunschweig, Germany, 2002.Google Scholar
  63. 63.
    G. Simeonides, J. P. Vermeulen, S. Zemsch. “Amplification of Disturbances and the Promotion of Laminar-Turbulent Transition Through Regions of Hypersonic Shock Wave Boundary Layer Interaction”. R. Brun, A. A. Chikhaoui (eds.), Aerothermochemistry of Spacecraft and Associated Hypersonic Flows. Proc. IUTAM Symposium, Marseille, France, 1992, pp. 344–351.Google Scholar
  64. 64.
    L. De Luca, G. Cardone, D. Aymer de la Chevalerie, A. Fonteneau. “Viscous Interaction Phenomena in Hypersonic Wedge Flow”. AIAA J., Vol. 33, No. 12, 1995, pp. 2293–2298.Google Scholar
  65. 65.
    H. Lüdecke, P. Krogmann. “Numerical and Experimental Investigations of Laminar/Turbulent Boundary Layer Transition”. Proc. ECCOMAS 2000, Barcelona, Spain, 2000.Google Scholar
  66. 66.
    R. E. Spall, M. R. Malik. “Görtler Vortices in Supersonic and Hypersonic Boundary Layers”. Physics of Fluids, Vol. 1, 1989, pp. 1822–1835.CrossRefMATHGoogle Scholar
  67. 67.
    W. S. Saric. “Görtler Vortices”. Annual Review of Fluid Mechnics, Vol. 26, 1994, pp. 379–409.MATHMathSciNetGoogle Scholar
  68. 68.
    R. Narasimha. “The Three Archetypes of Relaminarisation”. Proc. 6th Canadian Conf. of Applied Mechanics, Vol. 2, 1977, pp. 503–518.Google Scholar
  69. 69.
    F. M. White. “Viscous Fluid Flow”. Second edition, McGraw-Hill, New York, 1991.Google Scholar
  70. 70.
    R. Mukund, P. R. Viswanath, J. D. Crouch. “Relaminarization and Retransition of Accelerated Turbulent Boundary Layers on a Convex Surface”. H. F. Fasel, W. S. Saric (eds.), Laminar-Turbulent Transition. Springer-Verlag, Berlin/Heidelberg/New York, 2000, pp. 243–248.Google Scholar
  71. 71.
    E. Reshotko. “Environment and Receptivity”. AGARD R-709, 1984, pp. 4-1 to 4-11.Google Scholar
  72. 72.
    U. Schumann, P. Konopka, R. Baumann, R. Busen, T. Gerz, H. Schlager, P. Schulte, H. Volkert. “Estimate of Diffusion Parameters of Aircraft Exhaust Plumes near the Tropopause from Nitric Oxide and Turbulence Measurements”. J. of Geophysical Research, Vol. 100, No. D7, 1995, pp. 14,147–14,162.CrossRefGoogle Scholar
  73. 73.
    I. E. Beckwith. “Development of a High-Reynolds Number Quiet Tunnel for Transition Research”. AIAA J., Vol. 13, 1997, pp. 300–316.Google Scholar
  74. 74.
    W. Kordulla, R. Radespiel, P. Krogmann, F. Maurer. “Aerothermodynamic Activities in Hypersonics at DLR”. AIAA-Paper 92-5032, 1992.Google Scholar
  75. 75.
    A. Weise, G. Schwarz. “Der Stosswindkanal des Instituts für Aerodynamik und Gasdynamik der Universität Stuttgart”. Zeitschrift für Flugwissenschaften (ZFW), Vol. 21, No. 4, 1973, pp. 121–131.Google Scholar
  76. 76.
    P. Krogmann. “An Experimental Study of Boundary Layer Transition on a Slender Cone at Mach 5”. AGARD-CP-224, 1977, pp. 26-1 to 26-12.Google Scholar
  77. 77.
    S. P. Schneider. “Development of a Mach-6 Quiet-Flow Ludwieg Tube for Transition Research”. H. F. Fasel, W. S. Saric (eds.), Laminar-Turbulent Transition. Springer-Verlag, Berlin/Heidelberg/New York, 2000, pp. 427–432.Google Scholar
  78. 78.
    W. S. Saric, H. L. Reed, E. J. Kerschen. “Boundary-Layer Receptivity to Freestream Disturbances”. Annual Review of Fluid Mechnics, Vol. 34, 2002, pp. 291–319.MathSciNetCrossRefGoogle Scholar
  79. 79.
    F. R. Menter. “Influence of Freestream Values on k-w Turbulence Model Predictions”. AIAA J., Vol. 33, No. 12, 1995, pp. 1657–1659.Google Scholar
  80. 80.
    A. Celic. “Performance of Modern Eddy-Viscosity Turbulence Models”. Doctoral Thesis, Universität Stuttgart, Germany, 2004.Google Scholar
  81. 81.
    G. Schrauf. “Industrial View on Transition Prediction”. S. Wagner, M. Kloker, U. Rist (eds.), Recent Results in Laminar-Turbulent Transition. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, NNFM 86, Springer, Berlin/Heidelberg/New York, 2004, pp. 111–122.Google Scholar
  82. 82.
    M. R. Malik. “COSAL-A Black Box Compressible Stability Analysis Code for Transition Prediction in Three-Dimensional Boundary Layers”. NASA CR 165925, 1982.Google Scholar
  83. 83.
    U. Ehrenstein, U. Dallmann. “Ein Verfahren zur linearen Stabilitätsanalyse von dreidimensionalen, kompressiblen Grenzschichten”. DFVLR IB 221-88 A 20, 1988.Google Scholar
  84. 84.
    M. Simen. “COSMET, a DLR-Dornier Computer Program for Compressible Stability Analysis with Local Metric”. DFVLR IB 221-91 A 09, 1991.Google Scholar
  85. 85.
    F. Laburthe. “Problème de stabilité linéaire et prévision de la transition dans des configurations tridimensionelles, incompressibles et compressibles”. Doctoral Thesis, ENSAE, Toulouse, France, 1992.Google Scholar
  86. 86.
    A. Hanifi. “Stability Characteristics of the Supersonic Boundary Layer on a Yawed Cone”. Licentiate Thesis, TRITA-MEK, TR 1993:6, Royal Institute of Technology, Stockholm, Sweden, 1993.Google Scholar
  87. 87.
    M. R. Malik. “Boundary-Layer Transition Prediction Toolkit”. AIAA-Paper 97-1904, 1997.Google Scholar
  88. 88.
    G. Schrauf. “Curvature Effects for Three-Dimensional, Compressible Boundary Layer Stability”. Zeitschrift für Flugwissenschaften und Weltraumforschung (ZFW), Vol. 16, No. 2, 1992, pp. 119–127.Google Scholar
  89. 89.
    G. Schrauf. “COAST3-A Compressible Stability Code. User’s Guide and Tutorial”. Deutsche Airbus, TR EF-040/98, 1998.Google Scholar
  90. 90.
    Th. Herbert. “Parabolized Stability Equations”. Annual Review of Fluid Mechanics, Vol. 29, 1997, pp. 245–283.MathSciNetCrossRefGoogle Scholar
  91. 91.
    F. P. Bertolotti. “Linear and Nonlinear Stability of Boundary Layers with Streamwise Varying Properties”. Doctoral Thesis, Ohio State University, USA, 1991.Google Scholar
  92. 92.
    C. L. Chang, M. R. Malik, G. Erlebacher, M. Y. Hussaini.“Compressible Stability of Growing Boundary Layers Using Parabolized Stability Equations”. AIAA-Paper 91-1636, 1991.Google Scholar
  93. 93.
    M. Simen. “Lokale und nichtlokale Instabilität hypersonischer Grenzschichtströmungen (Local and Non-local Stability of Hypersonic Boundary-Layer Flows)”. Doctoral Thesis, Universität Stuttgart, Germany, 1993.Google Scholar
  94. 94.
    Th. Herbert, G. K. Stuckert, N. Lin. “Nonparallel Effects in Hypersonic Boundary Layer Stability”. WL-TR-93-3097, 1993.Google Scholar
  95. 95.
    M. Simen, F. P. Bertolotti, S. Hein, A. Hanifi, D. S. Henningson, U. Dallmann. “Nonlocal and Nonlinear Stability Theory”. S. Wagner, J. Periaux, E. H. Hirschel (eds.), Computational Fluid Dynamics’ 94. John Wiley and Sons, Chichester, 1994, pp. 169–179.Google Scholar
  96. 96.
    M. S. Mughal, P. Hall. “Parabolized Stability Equations and Transition Prediction for Compressible Swept-Wing Flows”. Imperial College for Science, Technology and Medicine, final report on DTI contract ASF/2583U, 1996.Google Scholar
  97. 97.
    C. L. Chang, H. Vinh, M. R. Malik. “Hypersonic Boundary-Layer Stability with Chemical Reactions using PSE”. AIAA-Paper 97-2012, 1997.Google Scholar
  98. 98.
    H. Salinas. “Stabilité linéaire et faiblement non linéaire d’une couche limite laminaire compressible tridimensionelle par l’approache PSE”. Doctoral Thesis, ENSAE, Toulouse, France, 1998.Google Scholar
  99. 99.
    F. P. Bertolotti. “The Equivalent Forcing Model for Receptivity Analysis with Application to the Construction of a High-Performance Skin-Perforation Pattern for Laminar Flow Control”. S. Wagner, M. Kloker, U. Rist (eds.), Recent Results in Laminar-Turbulent Transition. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, NNFM 86, Springer, Berlin/Heidelberg/New York, 2004, pp. 25–36.Google Scholar
  100. 100.
    D. C. Hill. “Adjoint Systems and their Role in the Receptivity Problem for Boundary Layers”. J. Fluid Mechnics, Vol. 292, 1995, pp. 183–204.MATHCrossRefGoogle Scholar
  101. 101.
    J. L. van Ingen. “A Suggested Semi-Empirical Method for the Calculation of the Boundary-Layer Transition Region”. Reports UTH71 and UTH74, Delft, The Netherlands, 1956.Google Scholar
  102. 102.
    A. M. O. Smith, N. Gamberoni. “Transition, Pressure Gradient and Stability Theory”. Douglas Report No. ES 26388, 1956.Google Scholar
  103. 103.
    D. Arnal. “Boundary-Layer Transition: Predictions Based on Linear Theory”. AGARD-R-793, 1994, pp. 2–1 to 2–63.Google Scholar
  104. 104.
    L. M. Mack. “Transition Prediction and Linear Stability Theory”. AGARD CP-224, 1977, pp. 1–1 to 1–22.Google Scholar
  105. 105.
    N. A. Thyson, K. K. Chen. “Extension of the Emmon’s Spot Theory to Flows on Blunt Bodies”. AIAA J., Vol. 9, No. 5, 1971, pp. 821–825.Google Scholar
  106. 106.
    H. W. Kipp, R. V. Masek. “Aerodynamic Heating Constraints on Space Shuttle Vehicle Design”. ASME pub. 70 HT/SpT 45, 1970.Google Scholar
  107. 107.
    P. Hernandez, Ph. Tran. “Modèle global de déclenchement de la transition sur la ligne centrale intrados d’un planteur hypersonique”. Aerospatiale H-NT-1-650-AS, 1991.Google Scholar
  108. 108.
    A. Martellucci, A. M. Berkowitz, C. L. Kyriss. “Boundary-Layer Transition-Flight Test Observations”. AIAA-Paper 77-0125, 1977.Google Scholar
  109. 109.
    A. Velázquez. “FESTIP Technology Developments in Aerothermodynamics for Reusable Launch Vehicles”. SENER Doc. No. P215809-FR, 2000.Google Scholar
  110. 110.
    E. H. Hirschel. “Present and Future Aerodynamic Process Technologies at DASA Military Aircraft”. ERCOFTAC Industrial Technology Topic Meeting, Florence, Italy, 1999.Google Scholar
  111. 111.
    E. F. Spina, A. J. Smits, S. K. Robinson. “The Physics of Supersonic Turbulent Boundary Layers”. Annual Review of Fluid Mechanics, Vol. 26, 1994, pp. 287–319.CrossRefGoogle Scholar
  112. 112.
    J.-P. Dussauge, H. H. Fernholz, R. W. Smith, P. J. Finley, A. J. Smits, E. F. Spina. “Turbulent Boundary Layers in Subsonic and Supersonic Flow”. AGARDograph 335, 1996.Google Scholar
  113. 113.
    B. Aupoix. “Introduction to Turbulence Modelling for Turbulent Flows”. C. Benocci, J. P. A. J. van Beek, (eds.), Introduction to Turbulence Modeling. VKI Lecture Series 2002-02, VKI, Rhode Saint Genèse, Belgium, 2002.Google Scholar
  114. 114.
    M. V. Morkovin. “Effects of Compressibility on Turbulent Flows”. Colloque International CNRS No. 108, Mécanique de la Turbulence, Editions CNRS, 1961.Google Scholar
  115. 115.
    P. G. Huang, G. N. Coleman, P. Bradshaw. “Compessible Turbulent Channel Flows-DNS Results and Modeling”. J. Fluid Mechnics, Vol. 305, 1995, pp. 185–218.CrossRefMATHGoogle Scholar
  116. 116.
    Th. Maeder. “Numerical Investigation of Supersonic Turbulent Boundary Layers”. Doctoral Thesis, ETH Zürich, Switzerland, 2000, Fortschritts-Berichte VDI, Reihe 7, Strömungstechnik, Nr. 394, 2000.Google Scholar
  117. 117.
    R. Friedrich, F. P. Bertolotti. “Compressibility Effects Due to Turbulence Fluctuations”. Applied Scientific Research, Vol. 57, 1997, pp. 165–194.MATHGoogle Scholar
  118. 118.
    D. S. Dolling. “Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next?”. AIAA J., Vol. 39, No. 8, 2001, pp. 1517–1531.CrossRefGoogle Scholar
  119. 119.
    H. U. Meier, J. C. Rotta. “Temperature Distributions in Supersonic Turbulent Boundary Layers”. AIAA J., Vol. 9, No. 11, 1971, pp. 2149–2156.Google Scholar
  120. 120.
    C. Weber, R. Behr, C. Weiland. “Investigation of Hypersonic Turbulent Flow over the X-38 Crew Return Vehicle”. AIAA-Paper 2000-2601, 2000.Google Scholar

Copyright information

© Springer Berlin Heidelberg 2005

Personalised recommendations