Attached High-Speed Viscous Flow


Boundary Layer Wall Shear Stress Wall Temperature Turbulent Boundary Layer Viscous Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Hirschel. “Evaluation of Results of Boundary-Layer Calculations with Regard to Design Aerodynamics”. AGARD R-741, 1986, pp. 5-1 to 5-29.Google Scholar
  2. 2.
    J. Cousteix, D. Arnal, B. Aupoix, J. Ph. Brazier, A. Lafon. “Shock Layers and Boundary Layers in Hypersonic Flows”. Progress in Aerospace Sciences, Pergamon Press, Vol. 30, 1994, pp. 95–212.CrossRefGoogle Scholar
  3. 3.
    E. H. Hirschel. “Vortex Flows: Some General Properties, and Modelling, Configurational and Manipulation Aspects”. AIAA-Paper 96-2514, 1996.Google Scholar
  4. 4.
    E. H. Hirschel, W. Kordulla. “Shear Flow in Surface-Oriented Coordinates”. Notes on Numerical Fluid Mechanics, Vol. 4. Vieweg, Braunschweig/Wiesbaden, 1981.Google Scholar
  5. 5.
    D. C. Wilcox. “Turbulence Modelling for CFD”. DCW Industries, La Cañada, CAL., USA, 1998.Google Scholar
  6. 6.
    R. B. Bird, W. E. Stewart, E. N. Lightfoot. “Transport Phenomena”. John Wiley, New York and London/Sydney, 2nd edition, 2002.Google Scholar
  7. 7.
    L. Prandtl. “Über Flüssigkeitsbewegung bei sehr kleiner Reibung”. Proc. Third International Mathematical Congress, Heidelberg, Germany, 1904.Google Scholar
  8. 8.
    D. Frederick, T. S. Chang. “Continuum Mechanics”. Allyn and Bacon, Boston, Mass., 1965.Google Scholar
  9. 9.
    D. R. Chapman, M. W. Rubesin. “Temperature and Velocity Profiles in the Compressible Laminar Boundary Layer with Arbitrary Distribution of Surface Temperature”. Journal of the Aeronautical Sciences, Vol. 16, 1949, pp. 547–565.MathSciNetGoogle Scholar
  10. 10.
    E. H. Hirschel. “Boundary-Layer Coordinates on General Wings and Fuselages”. Zeitschrift für Flugwissenschaften und Weltraumforschung (ZFW), Vol. 6, No. 3, 1982, pp. 194–202.Google Scholar
  11. 11.
    M. van Dyke. “Perturbation Methods in Fluid Mechanics”. The Parabolic Press, Stanford, 1975.Google Scholar
  12. 12.
    B. Aupoix, J. Ph. Brazier, J. Cousteix, F. Monnoyer. “Second-Order Effects in Hypersonic Boundary Layers”. J. J. Bertin, J. Periaux, J. Ballmann (eds.), Advances in Hypersonics, Vol. 3, Computing Hypersonic Flows. Birkhäuser, Boston, 1992, pp. 21–61.Google Scholar
  13. 13.
    R. Courant, D. Hilbert. “Methods of Mathematical Physics”. Vol. II. John Wiley-Interscience, New York, 1962.Google Scholar
  14. 14.
    M. W. Rubesin, H. A. Johnson. “A Critical Review of Skin Friction and Heat Transfer Solutions of the Laminar Boundary Layer of a Flat Plate”. Trans. ASME, Vol. 71, 1949, pp. 385–388.MathSciNetGoogle Scholar
  15. 15.
    E. R. G. Eckert. “Engineering Relations of Friction and Heat Transfer to Surfaces in High-Velocity Flow”. J. Aeronautical Sciences, Vol. 22, No. 8, 1955, pp. 585–587.MATHGoogle Scholar
  16. 16.
    G. Simeonides, L. Walpot, M. Netterfield, G. Tumino. “Evaluation of Engineering Heat Transfer Prediction Methods in High Enthalpy Flow Conditions”. AIAA-Paper 96-1860, 1996.Google Scholar
  17. 17.
    E. H. Hirschel. “Untersuchung grenzschichtähnlicher Strömungen mit Druckgradienten bei grossen Anström-Machzahlen (Investigation of Boundary Layer Like Flows at Large Free-Stream Mach Numbers)”. Inaugural Thesis, RWTH Aachen, Germany, 1975, also DLR FB 76-22, 1976.Google Scholar
  18. 18.
    Y. C. Vigneron, J. V. Rakich, J. C. Tannehill. “Calculation of Supersonic Viscous Flows over Delta Wings with Sharp Subsonic Leading Edges”. AIAAPaper 78-1137, 1978.Google Scholar
  19. 19.
    E. H. Hirschel. “Untersuchungen zum Problem Normaler Druckgradienten in Hyperschallgrenzschichten”. Laminare und turbulente Grenzschichten. DLR Mitt. 71-13, 1971, pp. 51–73.Google Scholar
  20. 20.
    H. Schlichting. “Boundary Layer Theory”. 7th edition, McGraw-Hill, New York, 1979.Google Scholar
  21. 21.
    F. M. White. “Viscous Fluid Flow”. McGraw-Hill, New York, 2nd edition, 1991.Google Scholar
  22. 22.
    E. R. G. Eckert, R. M. Drake. “Heat and Mass Transfer”. MacGraw-Hill, New York, 1950.Google Scholar
  23. 23.
    G. Simeonides. “On the Scaling of Wall Temperature Viscous Effects”. ESA/ESTEC EWP-1880, 1996.Google Scholar
  24. 24.
    M. J. Lighthill. “On Displacement Thickness”. J. Fluid Mechanics, Vol. 4, 1958, pp. 383–392.MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    F. Monnoyer, Ch. Mundt, M. Pfitzner. “Calculation of the Hypersonic Viscous Flow past Reentry Vehicles with an Euler-Boundary Layer Coupling Method”. AIAA-Paper 90-0417, 1990.Google Scholar
  26. 26.
    G. Simeonides. “Hypersonic Shock Wave Boundary Layer Interactions over Compression Corners”. Doctoral Thesis, University of Bristol, U.K., 1992.Google Scholar
  27. 27.
    G. B. Schubauer, P. S. Klebanoff. “Contributions on the Mechanics of Boundary Layer Transition”. NACA TN 3489, 1955, and NACA R 1289, 1956.Google Scholar
  28. 28.
    W. Mangler. “Zusammenhang zwischen ebenen und rotatiossymmetrischen Grenzschichten in kompressiblen Flüssigkeiten”. ZAMM, Vol. 28, 1948, pp. 97–103.MATHMathSciNetGoogle Scholar
  29. 29.
    E. Reshotko. “Heat Transfer to a General Three-Dimensional Stagnation Point”. Jet Propulsion, Vol. 28, 1958, pp. 58–60.Google Scholar
  30. 30.
    E. Reshotko, I. E. Beckwith. “Compressible Laminar Boundary Layer over a Yawed Infinite Cylinder with Heat Transfer and Arbitrary Prandtl Number”. NACA R 1379, 1958.Google Scholar
  31. 31.
    G. Simeonides. “Generalized Reference-Enthalpy Formulation and Simulation of Viscous Effects in Hypersonic Flow”. Shock Waves, Vol. 8, No. 3, 1998, pp. 161–172.MATHCrossRefGoogle Scholar
  32. 32.
    L. Lees. “Laminar Heat Transfer over Blunt-Nosed Bodies at Hypersonic Speeds”. Jet Propulsion, Vol. 26, 1956, pp. 259–269.Google Scholar
  33. 33.
    J. D. Anderson. “Hypersonic and High Temperature Gas Dynamics”. McGraw-Hill, New York, 1989.Google Scholar
  34. 34.
    G. Simeonides. “Simple Formulations for Convective Heat Transfer Prediction over Generic Aerodynamic Configurations and Scaling of Radiation-Equilibrium Wall Temperature”. ESA/ESTEC EWP 1860, 1995.Google Scholar
  35. 35.
    J. A. Fay, F. R. Riddell. “Theory of Stagnation Point Heat Transfer in Dissociated Gas”. Journal of Aeronautical Science, Vol. 25, No. 2, 1958, pp. 73–85.MathSciNetGoogle Scholar
  36. 36.
    D. I. A. Poll. “Transition Description and Prediction in Three-Dimensional Flow”. AGARD-R-709, 1984, pp. 5-1 to 5-23.Google Scholar
  37. 37.
    E. H. Hirschel. “Thermal Surface Effects in Aerothermodynamics”. Proc. Third European Symposium on Aerothermodynamics for Space Vehicles, Noordwijk, The Netherlands, November 24–26, 1998. ESA SP-426, 1999, pp. 17–31.Google Scholar
  38. 38.
    M. A. Schmatz, R. K. Höld, F. Monnoyer, Ch. Mundt, H. Rieger, K. M. Wanie. “Numerical Methods for Aerodynamic Design II”. Space Course 1991, RWTH Aachen, 1991, pp. 62-1 to 62-40.Google Scholar
  39. 39.
    R. Radespiel. Personal communication. 1994.Google Scholar
  40. 40.
    I. Oye, H. Norstrud. “Personal communication”. 2003.Google Scholar
  41. 41.
    W. Schröder, R. Behr, S. Menne. “Analysis of Hypersonic Flows Around Space Transportation Systems via CFD Methods”. AIAA-Paper 93-5067, 1993.Google Scholar

Copyright information

© Springer Berlin Heidelberg 2005

Personalised recommendations