Skip to main content

Inviscid Aerothermodynamic Phenomena

  • Chapter
Basics of Aerothermodynamics
  • 1991 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Thorwald. “Demonstration of Configurational Phenomena Exemplified by the RHPM-Hypersonic-Flyer”. Diploma Thesis, University Stuttgart, Germany, 2003.

    Google Scholar 

  2. K. Oswatitsch. “Gas Dynamics”. Academic Press, New York, 1956.

    Google Scholar 

  3. H. W. Liepmann, A. Roshko. “Elements of Gasdynamics”. John Wiley & Sons, New York/London/Sidney, 1966.

    Google Scholar 

  4. J. Zierep. “Theorie der schallnahen und der Hyperschallströmungen”. Verlag G. Braun, Karlsruhe, 1966.

    MATH  Google Scholar 

  5. J. D. Anderson. “Modern Compressible Flow: with Historical Perspective”. McGraw-Hill, New York, 1982.

    Google Scholar 

  6. W. Zeiss. Personal communication, München 2003.

    Google Scholar 

  7. E. H. Hirschel. “Aerothermodynamic Phenomena and the Design of Atmospheric Hypersonic Airplanes”. J. J. Bertin, J. Periaux, J. Ballmann (eds.), Advances in Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkhäuser, Boston, 1992, pp. 1–39.

    Google Scholar 

  8. W. H. Heiser, D. T. Pratt. “Hypersonic Airbreathing Propulsion”. AIAA Education Series, Washington, 1994.

    Google Scholar 

  9. A. Eberle, M. A. Schmatz, N. C. Bissinger. “Generalized Flux Vectors for Hypersonic Shock Capturing”. AIAA-Paper 90-0390, 1990.

    Google Scholar 

  10. Ames Research Staff. “Equations, Tables, and Charts for Compressible Flow”. NACA R-1135, 1953.

    Google Scholar 

  11. C. Weiland. “A Contribution to the Computation of Transonic Supersonic Flows over Blunt Bodies”. Computers and Fluids, Vol. 9, 1981, pp. 143–162.

    Article  MATH  Google Scholar 

  12. H. J. Lugt. “Introduction to Vortex Theory”. Vortex Flow Press, Potomac, Maryland, 1996.

    Google Scholar 

  13. P. J. Schmid, D. S. Henningson. “Stability and Transition in Shear Flows”. Springer-Verlag, New York/Berlin/Heidelberg, 2001.

    MATH  Google Scholar 

  14. J. N. Moss. “Computation of Flow Fields for Hypersonic Flight at High Altitudes”. J. J. Bertin, J. Periaux, J. Ballmann (eds.), Advances in Hypersonics, Vol. 3, Computing Hypersonic Flows. Birkhäuser, Boston, 1992, pp. 371–427.

    Google Scholar 

  15. J. K. Harvey. “Rarefied Gas Dynamics for Spacecraft”. J. J. Bertin, R. Glowinski, J. Periaux (eds.), Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkhäuser, Boston, 1989, pp. 483–509.

    Google Scholar 

  16. H. W. Liepmann, R. Narasimha, M. T. Chahine. “Structure of a Plane Shock Layer”. J. Physics of Fluids, Vol. 5, No. 11, 1962, pp. 1313–1324.

    Article  MATH  Google Scholar 

  17. E. H. Hirschel. “The Structure of a Reflecting Oblique Shock Wave”. H. Cabannes, R. Temann (eds.), Proc. of the Third International Conference on Numerical Methods in Fluid Mechanics, Vol. II, Problems of Fluid Mechanics. Lecture Notes in Physics 19, Springer, Berlin/Heidelberg/New York, 1973, pp. 153–160.

    Google Scholar 

  18. A. Eberle, A. Rizzi, E. H. Hirschel. “Numerical Solutions of the Euler Equations for Steady Flow Problems”. Notes on Numerical Fluid Mechanics, NNFM 34. Vieweg, Braunschweig/Wiesbaden, 1992

    Google Scholar 

  19. C. Weiland, M. Pfitzner, G. Hartmann. “Euler Solvers for Hypersonic Aerothermodynamic Problems”. Notes of Numerical Fluid Mechanics, NNFM 20, Vieweg, Braunschweig/Wiesbaden, 1988, pp. 426–433.

    Google Scholar 

  20. G. Koppenwallner. “Rarefied Gas Dynamics”. J. J. Bertin, R. Glowinski, J. Periaux (eds.), Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkhäuser, Boston, 1989, pp. 511–547.

    Google Scholar 

  21. W. D. Hayes, R. F. Probstein. “Hypersonic Flow Theory, Volume 1, Inviscid Flows”. Academic Press, New York/London, 1966.

    Google Scholar 

  22. H. G. Hornung. “Non-Equilibrium Dissociating Nitrogen Flow Over Spheres and Circular Cylinders”. J. Fluid Mechanics, Vol. 53, Part 1, 1972, pp. 149–176.

    Article  MATH  Google Scholar 

  23. H. Olivier. “A Theoretical Model for the Shock Stand-Off Distance in Frozen and Equilibrium Flows”. J. Fluid Mechanics, Vol. 413, 2000, pp. 345–353.

    Article  MATH  MathSciNet  Google Scholar 

  24. Ch. Mundt, M. Pfitzner, M. A. Schmatz. “Calculation of Viscous Hypersonic Flows Using a Coupled Euler/Second-Order Boundary-Layer Method”. Notes of Numerical Fluid Mechanics, NNFM 29, Vieweg, Braunschweig/Wiesbaden, 1990, pp. 422–433.

    Google Scholar 

  25. Ch. Mundt. “Rechnerische Simulation reibungsbehafteter Strömungen im chemischen Nichtgleichgewicht (Computational Simulation of Viscous Flows in Chemical Non-Equilibrium)”. Doctoral Thesis, Technische Universität München, 1992.

    Google Scholar 

  26. J.-A. Désidéri, M.-V. Salvetti. “Inviscid Non-Equilibrium Flow in the Vicinity of a Stagnation Point”. Mathematical problems in Mechanics (Mathematical Analysis). C. R. Académie des Sciences, Paris, t. 316, Série I, 1993, pp.525–530.

    Google Scholar 

  27. E. H. Hirschel. “Thermal Surface Effects in Aerothermodynamics”. Proc. Third European Symposium on Aerothermodynamics for Space Vehicles, Noordwijk, The Netherlands, November 24–26, 1998. ESA SP-426, 1999, pp. 17–31.

    Google Scholar 

  28. H. Schlichting. “Boundary Layer Theory”. 7th edition, McGraw-Hill, New York, 1979.

    MATH  Google Scholar 

  29. V. Zakkay, E. Krause. “Boundary Conditions at the Outer Edge of the Boundary Layer on Blunted Conical Bodies”. AIAA Journal, Vol. 1, 1963, pp. 1671–1672.

    Article  Google Scholar 

  30. A. Ferri. “Some Heat Transfer Problems in Hypersonic Flow”. Aeronautics and Astronautics, Pergamon Press, 1960, pp. 344–377.

    Google Scholar 

  31. N. R. Rotta, V. Zakkay. “Effects of Nose Bluntness on the Boundary Layer Characteristics of Conical Bodies at Hypersonic Speeds”. Astronautica Acta, Vol. 13, 1968, pp. 507–516.

    Google Scholar 

  32. F. Monnoyer. “Hypersonic Boundary-Layer Flows”. H. Schmitt (ed.), Advances in Fluid Mechanics. Computational Mechanics Publications, Southampton, 1997, pp. 365–406.

    Google Scholar 

  33. R. B. Bird, W. E. Stewart, E. N. Lightfoot. “Transport Phenomena”. John Wiley, New York and London/Sydney, 2nd edition, 2002.

    Google Scholar 

  34. U. Reisch, Y. Anseaume. “Validation of the Approximate Calculation Procedure HOTSOSE foe Aerodynamic and Thermal Loads in Hypersonic Flow with Existing Experimental and Numerical Results”. DLR-FB 98-23, 1998.

    Google Scholar 

  35. M. Mharchi. “Demonstration of Hypersonic Thermal Phenomena and Viscous Effects with the RHPM-Flyer”. Diploma Thesis, University Stuttgart, Germany, 2003.

    Google Scholar 

  36. H.-U. Georg. Personal communication, München 1996.

    Google Scholar 

  37. J. J. Bertin. “State-of-the-Art Engineering Approaches to Flow Field Computations”. J. J. Bertin, R. Glowinski, J. Periaux (eds.), Hypersonics, Vol. 2, Computation and Measurement of Hypersonic Flows. Birkhäuser, Boston, 1989, pp. 1–91.

    Google Scholar 

  38. A. Busemann. “Flüssigkeits-und Gasbewegung”. Handwörterbuch der Naturwissenschaften, Vol. IV, 2nd Edition, G. Fischer, Jena, 1933, pp. 244–279.

    Google Scholar 

  39. L. Lees. “Hypersonic Flow”. IAS-Reprint 554, 1955.

    Google Scholar 

  40. E. Reshotko, C. B. Cohen. “Heat Transfer at the Forward Stagnation Point”. NACA TN-3513, 1955.

    Google Scholar 

  41. H. Olivier. “Influence of the Velocity Gradient on the Stagnation Point Heating in Hypersonic Flow”. Shock Waves, Vol. 5, 1995, pp. 205–216.

    Article  MATH  Google Scholar 

  42. K. Oswatitsch. “Ähnlichkeitsgesetze für Hyperschallströmung”. ZAMP, Vol. II, 1951, pp. 249–264. Also: “Similarity Laws for Hypersonic Flow”. Royal Institute of Technology, Stockholm, Sweden, KTH-AERO TN 16, 1950.

    MathSciNet  Google Scholar 

  43. H. S. Tsien. “Similarity Laws of Hypersonic Flows”. J. Math. Phys., Vol. 25, 1946, pp. 247–251.

    MATH  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Inviscid Aerothermodynamic Phenomena. In: Basics of Aerothermodynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26519-8_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-26519-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22132-6

  • Online ISBN: 978-3-540-26519-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics