Advertisement

Inviscid Aerothermodynamic Phenomena

Keywords

Shock Wave Mach Number Stagnation Point Oblique Shock Normal Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Thorwald. “Demonstration of Configurational Phenomena Exemplified by the RHPM-Hypersonic-Flyer”. Diploma Thesis, University Stuttgart, Germany, 2003.Google Scholar
  2. 2.
    K. Oswatitsch. “Gas Dynamics”. Academic Press, New York, 1956.Google Scholar
  3. 3.
    H. W. Liepmann, A. Roshko. “Elements of Gasdynamics”. John Wiley & Sons, New York/London/Sidney, 1966.Google Scholar
  4. 4.
    J. Zierep. “Theorie der schallnahen und der Hyperschallströmungen”. Verlag G. Braun, Karlsruhe, 1966.MATHGoogle Scholar
  5. 5.
    J. D. Anderson. “Modern Compressible Flow: with Historical Perspective”. McGraw-Hill, New York, 1982.Google Scholar
  6. 6.
    W. Zeiss. Personal communication, München 2003.Google Scholar
  7. 7.
    E. H. Hirschel. “Aerothermodynamic Phenomena and the Design of Atmospheric Hypersonic Airplanes”. J. J. Bertin, J. Periaux, J. Ballmann (eds.), Advances in Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkhäuser, Boston, 1992, pp. 1–39.Google Scholar
  8. 8.
    W. H. Heiser, D. T. Pratt. “Hypersonic Airbreathing Propulsion”. AIAA Education Series, Washington, 1994.Google Scholar
  9. 9.
    A. Eberle, M. A. Schmatz, N. C. Bissinger. “Generalized Flux Vectors for Hypersonic Shock Capturing”. AIAA-Paper 90-0390, 1990.Google Scholar
  10. 10.
    Ames Research Staff. “Equations, Tables, and Charts for Compressible Flow”. NACA R-1135, 1953.Google Scholar
  11. 11.
    C. Weiland. “A Contribution to the Computation of Transonic Supersonic Flows over Blunt Bodies”. Computers and Fluids, Vol. 9, 1981, pp. 143–162.MATHCrossRefGoogle Scholar
  12. 12.
    H. J. Lugt. “Introduction to Vortex Theory”. Vortex Flow Press, Potomac, Maryland, 1996.Google Scholar
  13. 13.
    P. J. Schmid, D. S. Henningson. “Stability and Transition in Shear Flows”. Springer-Verlag, New York/Berlin/Heidelberg, 2001.MATHGoogle Scholar
  14. 14.
    J. N. Moss. “Computation of Flow Fields for Hypersonic Flight at High Altitudes”. J. J. Bertin, J. Periaux, J. Ballmann (eds.), Advances in Hypersonics, Vol. 3, Computing Hypersonic Flows. Birkhäuser, Boston, 1992, pp. 371–427.Google Scholar
  15. 15.
    J. K. Harvey. “Rarefied Gas Dynamics for Spacecraft”. J. J. Bertin, R. Glowinski, J. Periaux (eds.), Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkhäuser, Boston, 1989, pp. 483–509.Google Scholar
  16. 16.
    H. W. Liepmann, R. Narasimha, M. T. Chahine. “Structure of a Plane Shock Layer”. J. Physics of Fluids, Vol. 5, No. 11, 1962, pp. 1313–1324.CrossRefMATHGoogle Scholar
  17. 17.
    E. H. Hirschel. “The Structure of a Reflecting Oblique Shock Wave”. H. Cabannes, R. Temann (eds.), Proc. of the Third International Conference on Numerical Methods in Fluid Mechanics, Vol. II, Problems of Fluid Mechanics. Lecture Notes in Physics 19, Springer, Berlin/Heidelberg/New York, 1973, pp. 153–160.Google Scholar
  18. 18.
    A. Eberle, A. Rizzi, E. H. Hirschel. “Numerical Solutions of the Euler Equations for Steady Flow Problems”. Notes on Numerical Fluid Mechanics, NNFM 34. Vieweg, Braunschweig/Wiesbaden, 1992Google Scholar
  19. 19.
    C. Weiland, M. Pfitzner, G. Hartmann. “Euler Solvers for Hypersonic Aerothermodynamic Problems”. Notes of Numerical Fluid Mechanics, NNFM 20, Vieweg, Braunschweig/Wiesbaden, 1988, pp. 426–433.Google Scholar
  20. 20.
    G. Koppenwallner. “Rarefied Gas Dynamics”. J. J. Bertin, R. Glowinski, J. Periaux (eds.), Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkhäuser, Boston, 1989, pp. 511–547.Google Scholar
  21. 21.
    W. D. Hayes, R. F. Probstein. “Hypersonic Flow Theory, Volume 1, Inviscid Flows”. Academic Press, New York/London, 1966.Google Scholar
  22. 22.
    H. G. Hornung. “Non-Equilibrium Dissociating Nitrogen Flow Over Spheres and Circular Cylinders”. J. Fluid Mechanics, Vol. 53, Part 1, 1972, pp. 149–176.MATHCrossRefGoogle Scholar
  23. 23.
    H. Olivier. “A Theoretical Model for the Shock Stand-Off Distance in Frozen and Equilibrium Flows”. J. Fluid Mechanics, Vol. 413, 2000, pp. 345–353.MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Ch. Mundt, M. Pfitzner, M. A. Schmatz. “Calculation of Viscous Hypersonic Flows Using a Coupled Euler/Second-Order Boundary-Layer Method”. Notes of Numerical Fluid Mechanics, NNFM 29, Vieweg, Braunschweig/Wiesbaden, 1990, pp. 422–433.Google Scholar
  25. 25.
    Ch. Mundt. “Rechnerische Simulation reibungsbehafteter Strömungen im chemischen Nichtgleichgewicht (Computational Simulation of Viscous Flows in Chemical Non-Equilibrium)”. Doctoral Thesis, Technische Universität München, 1992.Google Scholar
  26. 26.
    J.-A. Désidéri, M.-V. Salvetti. “Inviscid Non-Equilibrium Flow in the Vicinity of a Stagnation Point”. Mathematical problems in Mechanics (Mathematical Analysis). C. R. Académie des Sciences, Paris, t. 316, Série I, 1993, pp.525–530.Google Scholar
  27. 27.
    E. H. Hirschel. “Thermal Surface Effects in Aerothermodynamics”. Proc. Third European Symposium on Aerothermodynamics for Space Vehicles, Noordwijk, The Netherlands, November 24–26, 1998. ESA SP-426, 1999, pp. 17–31.Google Scholar
  28. 28.
    H. Schlichting. “Boundary Layer Theory”. 7th edition, McGraw-Hill, New York, 1979.MATHGoogle Scholar
  29. 29.
    V. Zakkay, E. Krause. “Boundary Conditions at the Outer Edge of the Boundary Layer on Blunted Conical Bodies”. AIAA Journal, Vol. 1, 1963, pp. 1671–1672.CrossRefGoogle Scholar
  30. 30.
    A. Ferri. “Some Heat Transfer Problems in Hypersonic Flow”. Aeronautics and Astronautics, Pergamon Press, 1960, pp. 344–377.Google Scholar
  31. 31.
    N. R. Rotta, V. Zakkay. “Effects of Nose Bluntness on the Boundary Layer Characteristics of Conical Bodies at Hypersonic Speeds”. Astronautica Acta, Vol. 13, 1968, pp. 507–516.Google Scholar
  32. 32.
    F. Monnoyer. “Hypersonic Boundary-Layer Flows”. H. Schmitt (ed.), Advances in Fluid Mechanics. Computational Mechanics Publications, Southampton, 1997, pp. 365–406.Google Scholar
  33. 33.
    R. B. Bird, W. E. Stewart, E. N. Lightfoot. “Transport Phenomena”. John Wiley, New York and London/Sydney, 2nd edition, 2002.Google Scholar
  34. 34.
    U. Reisch, Y. Anseaume. “Validation of the Approximate Calculation Procedure HOTSOSE foe Aerodynamic and Thermal Loads in Hypersonic Flow with Existing Experimental and Numerical Results”. DLR-FB 98-23, 1998.Google Scholar
  35. 35.
    M. Mharchi. “Demonstration of Hypersonic Thermal Phenomena and Viscous Effects with the RHPM-Flyer”. Diploma Thesis, University Stuttgart, Germany, 2003.Google Scholar
  36. 36.
    H.-U. Georg. Personal communication, München 1996.Google Scholar
  37. 37.
    J. J. Bertin. “State-of-the-Art Engineering Approaches to Flow Field Computations”. J. J. Bertin, R. Glowinski, J. Periaux (eds.), Hypersonics, Vol. 2, Computation and Measurement of Hypersonic Flows. Birkhäuser, Boston, 1989, pp. 1–91.Google Scholar
  38. 38.
    A. Busemann. “Flüssigkeits-und Gasbewegung”. Handwörterbuch der Naturwissenschaften, Vol. IV, 2nd Edition, G. Fischer, Jena, 1933, pp. 244–279.Google Scholar
  39. 39.
    L. Lees. “Hypersonic Flow”. IAS-Reprint 554, 1955.Google Scholar
  40. 40.
    E. Reshotko, C. B. Cohen. “Heat Transfer at the Forward Stagnation Point”. NACA TN-3513, 1955.Google Scholar
  41. 41.
    H. Olivier. “Influence of the Velocity Gradient on the Stagnation Point Heating in Hypersonic Flow”. Shock Waves, Vol. 5, 1995, pp. 205–216.MATHCrossRefGoogle Scholar
  42. 42.
    K. Oswatitsch. “Ähnlichkeitsgesetze für Hyperschallströmung”. ZAMP, Vol. II, 1951, pp. 249–264. Also: “Similarity Laws for Hypersonic Flow”. Royal Institute of Technology, Stockholm, Sweden, KTH-AERO TN 16, 1950.MathSciNetGoogle Scholar
  43. 43.
    H. S. Tsien. “Similarity Laws of Hypersonic Flows”. J. Math. Phys., Vol. 25, 1946, pp. 247–251.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2005

Personalised recommendations