Real-Gas Aerothermodynamic Phenomena


Nozzle Exit Direct Simulation Monte Carlo Hypersonic Flow Flight Vehicle Nozzle Throat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. G. Vincenti, C. H. Kruger. “Introduction to Physical Gas Dynamics”. John Wiley, New York and London/Sydney, 1965. Reprint edition, Krieger Publishing Comp., Melbourne, Fl., 1975Google Scholar
  2. 2.
    J. Hilsenrath, C. W. Beckett, S. Benedict, L. Fano, J. Hoge, F. Masi, L. Nuttall, S. Touloukian, W. Woolley. “Tables of Thermodynamics and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, Oxygen and Steam”. Pergamon Press, 1960.Google Scholar
  3. 3.
    E. H. Hirschel. “Beitrag zur Beschreibung der Realgaseinflüsse bei gasdynamischen Problemen”. DLR Mitt. 66-20, 1966.Google Scholar
  4. 4.
    G. Simeonides. “Hypersonic Shock Wave Boundary Layer Interactions over Compression Corners”. Doctoral Thesis, University of Bristol, U.K., 1992.Google Scholar
  5. 5.
    M. J. Lighthill. “Dynamics of a Dissociating Gas. Part I: Equilibrium Flow”. Journal of Fluid Mechanics, Vol. 2, 1957, pp. 1–32.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Park. “Nonequilibrium Hypersonic Flow”. John Wiley & Sons, New York, 1990.Google Scholar
  7. 7.
    G. Damköhler. “Einflüsse der Strömung, Diffusion und des Wärmeübergangs auf die Leistung von Reaktionsöfen”. Zeitschrift für Elektrochemie, Vol. 42, No. 12, 1936, pp. 846–862.Google Scholar
  8. 8.
    G. S. R. Sarma. “Physico-Chemical Modelling in Hypersonic Flow Simulation”. Progress in Aerospace Sciences, Vol. 36, No. 3–4, 2000, pp. 281–349.CrossRefGoogle Scholar
  9. 9.
    S. Sëror, E. Schall, M.-C. Druguet, D. E. Zeitoun. “An Extension of CVCD model to Zeldovich Exchange Reactions for Hypersonic Non-Equilibrium Air Flows”. Shock Waves, Vol. 8, 1998, pp. 285–298.CrossRefMATHGoogle Scholar
  10. 10.
    S. Kanne, H.-H. Frühauf, E. W. Messerschmid. “Thermochemical Relaxation Through Collisions and Radiation”. AIAA Journal of Thermophysics and Heat Transfer, Vol. 14, No. 4, 2000, pp. 464–470.Google Scholar
  11. 11.
    S. Bürck. “Ein Beitrag zur Beschreibung der Wechselwirkung von Stössen in reaktiven Hyperschallströmungen (Contribution to the Description of the Interaction of Shocks in Reacting Hypersonic Flows)”. Doctoral Thesis, Universität Stuttgart, Germany, 1998. Also DLR-FB 98-06, 1998.Google Scholar
  12. 12.
    K. Hannemann, V. Hannemann, S. Brück, R. Radespiel, G. S. R. Sarma. “Computational Modelling for High Enthalpy Flows”. SAMS, Vol. 34, No. 2, 1999, pp. 253–277.MATHGoogle Scholar
  13. 13.
    K. Hannemann. “Computation of the Flow in Hypersonic Wind Tunnel Nozzles”.W. Kordulla, S. Brück (eds.), DLR Contribution to the Fourth European High Velocity Data Base Workshop. DLR-FB 97-34, 1997.Google Scholar
  14. 14.
    L. M. G. Walpot, G. Simeonides, J. Muylaert, P. G. Bakker. “High Enthalpy Nozzle Flow Insensitivity Study and Effects on Heat Transfer”. Journal of Shock Waves, Vol. 16, 1996, pp. 197–204.CrossRefGoogle Scholar
  15. 16.
    A. H. Boudreau. “Characterization of Hypersonic Wind-Tunnel Flow Fields for Improved Data Accuracy”. AGARD CP 429, 1987, pp. 28-1 to 28-9.Google Scholar
  16. 16.
    C. D. Scott. “Wall Catalytic Recombination and Boundary Conditions in Nonequilibrium Hypersonic Flows-with Applications”. J. J. Bertin, J. Periauz, J. Ballmann (eds.), Advances in Hypersonics, Vol. 2, Modeling Hypersonic Flows. Birkhäuser, Boston, 1992, pp. 176–250.Google Scholar
  17. 17.
    M. Fertig, H.-H. Frühauf. “Reliable Prediction of Aerothermal Loads at TPS-Surfaces of Reusable Space Vehicles”. Proc. 12th European Aerospace Conference, Paris, November 29 to Dezember 1, 1999. 1999.Google Scholar
  18. 18.
    F. Bergemann. “Gaskinetische Simulation von kontinuumsnahen Hyperschailströmungen unter Berücksichtigung von Wandkatalye (Gas-Kinetic Simulation of Continuum-Near Hypersonic Flows with Regard to Surface Catalycity)”. DLR-FB 94-30, 1994.Google Scholar
  19. 19.
    D. A. Stewartt, J. V. Rakich, M. J. Lanfranco. “Catalytic Surface on Space Shuttle Thermal Protection System during Earth Entry of Flights STS-2 through STS-5”. J. P. Arrington, J. J. Jones (eds.), Shuttle Performance: Lessons Learned. NASA-Report CP 2283, 1983, pp. 827–845.Google Scholar
  20. 20.
    K. J. Weilmuenster, P. A. Gnoffo, F. A. Greene. “Navier-Stokes Simulations of the Shuttle Orbiter Aerodynamic Characteristics with Emphasis on Pitch Trim and Body Flap”. AIAA-Paper 93-2814, 1993.Google Scholar
  21. 21.
    H. G. HOrnung. “Non-Equilibrium Dissociating Nitrogen Flow over Spheres and Circular Cylinders”. J. Fluid Mechanics, Vol. 53, Part 1, 1972, pp. 149–176.MATHCrossRefGoogle Scholar
  22. 22.
    M. N. Macrossan. “Hypervelocity Flow of Dissociating Nitrogen Downstream of a Blunt Nose”. J. Fluid Mechanics, Vol. 217, 1990, pp. 167–202.CrossRefGoogle Scholar
  23. 23.
    B. F. Griffith, J. R. Maus, J. T. Best. “Explanation of the Hypersonic Longitudinal Stability Problem-Lessons Learned”. J. P. Arrington, J. J. Jones (eds.), Shuttle Performance: Lessons Learned. NASA CP-2283, Part 1, 1983, pp. 347–38O.Google Scholar
  24. 24.
    E. H. Hirschel. “Hypersonic Flow of a Dissociated Gas over a Flat Plate”. L. G. Napolitano (ed.), Astronautical Research 1970. North-Holland Publication Co., Amsterdam, 1971, pp. 158–171.Google Scholar
  25. 25.
    W. Schneider. “Effect of Radiation on Hypersonic Stagnation Flow at Low Density”. Zeitschrift für Flugwissenschaften (ZFW), Vol. 18, No. 2/3, 1970, pp. 50–58.Google Scholar
  26. 26.
    R. B. Bird, W. E. Stewart, E. N. Lightfoot. “Transport Phenomena”. John Wiley, New York and London/Sydney, 2nd edition, 2002.Google Scholar
  27. 27.
    L. Biolsi, D. Biolsi. Transport Properties for the Nitrogen System: N 2, N, N +, and e”. AIAA-Paper 83-1474, 1983.Google Scholar
  28. 28.
    L. Biolsi. “Transport Properties for the Oxygen System: O2, O, O +, and e”. AIAA-Paper 88-2657, 1988.Google Scholar
  29. 29.
    M. Fertig, A. Dohr, H.-H. Frühauf. “Transport Coefficients for High-Temperature Nonequilibrium Air Flows”. AIAA Journal of Thermophysics and Heat Transfer, Vol. 15, No. 2, 2001, pp. 148–156.CrossRefGoogle Scholar
  30. 30.
    S. Gordon, B. J. McBride. “Computer Progam for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations”. NASA SP-273, Interim Revision, 1976.Google Scholar
  31. 31.
    S. Srinivasan, J. C. Tannehill, K. J. Weilmuenster. “Simplified Curve Fits for the Thermodynamic Properties of Equilibrium Air”. ISU-ERI-Ames-86401, Iowa State University, 1986.Google Scholar
  32. 32.
    S. Srinivasan, J. C. Tannehill, K. J. Weilmuenster. “Simplified Curve Fits for the Transport Properties of Equilibrium Air”. ISU-ERI-Ames-88405, Iowa State University, 1987.Google Scholar
  33. 33.
    Ch. Mundt, R. Keraus, J. Fischer. “New, Accurate, Vectorized Approximations of State Surfaces for the Thermodynamic and Transport Properties of Equilibrium Air”. Zeitschrift für Flugwissenschaften und Weltraumforschung (ZFW), Vol. 15, No. 3, 1991, pp. 179–184.Google Scholar

Copyright information

© Springer Berlin Heidelberg 2005

Personalised recommendations