Advertisement

The Thermal State of the Surface

Keywords

Heat Flux Wall Temperature Stagnation Point Radiation Cool Space Shuttle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    H. Schlichting. “Boundary Layer Theory”. 7th edition, McGraw-Hill, New York, 1979.zbMATHGoogle Scholar
  2. 2.
    J. P. Arrington, J. J. Jones (eds.). “Shuttle Performance: Lessons Learned”. NASA CP-2283, 1983.Google Scholar
  3. 3.
    J. M. Longo, R. Radespiel. “Numerical Simulation of Heat Transfer Effects on 2-D Steady Subsonic Flows”. AIAA-Paper 95-0298, 1995.Google Scholar
  4. 4.
    E. H. Hirschel. “Heat Loads as Key Problem of Hypersonic Flight”. Zeitschrift für Flugwissenschaften und Weltraumforschung (ZFW), Vol. 16, No. 6, 1992, pp. 349–356.Google Scholar
  5. 5.
    W. Schneider. “Radiation Gasdynamics of Planetary Entry”. Astronautica Acta, Vol. 18(Supplement), 1974, pp. 193–213.Google Scholar
  6. 6.
    J. A. Fay, F. R. Riddell. “Theory of Stagnation Point Heat Transfer in Dissociated Gas”. Journal of Aeronautical Science, Vol. 25, No. 2, 1958, pp. 73–85.MathSciNetGoogle Scholar
  7. 7.
    R. W. Detra, H. Hidalgo. “Generalized Heat Transfer Formulas and Graphs for Nose Cone Re-Entry Into the Atmosphere”. ARS Journal, March 1961, pp. 318–321.Google Scholar
  8. 8.
    J. J. Bertin. “Hypersonic Aerothermodynamics”. AIAA Education Series, Washington, 1994.Google Scholar
  9. 9.
    R. B. Hildebrand. “Aerodynamic Fundamentals”. H. H. Koelle (ed.), Handbook of Astronautical Engineering. McGraw-Hill, New York/Toronto/London, 1961, pp. 5-1 to 5-42.Google Scholar
  10. 10.
    F. Monnoyer. Personal communication. 1992.Google Scholar
  11. 11.
    F. Monnoyer, Ch. Mundt, M. Pfitzner. “Calculation of the Hypersonic Viscous Flow Past Reentry Vehicles with an Euler/Boundary-Layer Coupling Method”. AIAA-Paper 90-0417, 1990.Google Scholar
  12. 12.
    E. H. Hirschel. “Aerothermodynamische Probleme bei Hyperschall-Fluggeräten”. Jahrestagung der DGLR, München, October 9 and 10, 1986. Also MBB/LKE122/PUB/S/270,1986.Google Scholar
  13. 13.
    E. V. Zoby, R. N. Gupta, A. L. Simmonds. “Temperature-Dependent Reaction-Rate Expression for Oxygen Recombination at Shuttle-Entry Conditions”. AIAA-Paper 84-0224, 1984.Google Scholar
  14. 14.
    E. R. G. Eckert, R. M. Drake. “Heat and Mass Transfer”. MacGraw-Hill, New York, 1950.Google Scholar
  15. 15.
    R. B. Bird, W. E. Stewart, E. N. Lightfoot. “Transport Phenomena”. John Wiley & Sons, New York/London/Sydney, 2nd edition 2002.Google Scholar
  16. 16.
    E. R. G. Eckert. “Engineering Relations of Friction and Heat Transfer to Surfaces in High-Velocity Flow”. J. Aeronautical Sciences, Vol. 22, No. 8, 1955, pp. 585–587.zbMATHGoogle Scholar
  17. 17.
    M. J. Lighthill. “Contributions to the Theory of Heat Transfer Through a Laminar Boundary Layer”. Proc. Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 202, Cambridge University Press, 1950, pp. 359–377.zbMATHMathSciNetGoogle Scholar
  18. 18.
    G. Simeonides. “Extrapolation-to-Flight of Convective Heating Measurements and Determination of Radiation-Equilibrium Surface Temperature in Hypersonic/High Enthalpy Flow”. To be submitted to Shock Waves.Google Scholar
  19. 19.
    S. D. Williams. “Columbia, the First Five Flights Entry Heating Data Series, Volume 1: an Overview”. NASA CR-171 820, 1984.Google Scholar
  20. 20.
    S. D. Williams. “Columbia, the First Five Flights Entry Heating Data Series, Volume 3: the Lower Windward Surface Center Line”. NASA CR-171 665, 1983.Google Scholar
  21. 21.
    S. Wüthrich, M. L. Sawley, G. Perruchoud. “The Coupled Euler/Boundary-Layer Method as a Design Tool for Hypersonic Re-Entry Vehicles”. Zeitschrift für Flugwissenschaften und Weltraumforschung (ZFW), Vol. 20, No. 3, 1996, pp. 137–144.Google Scholar
  22. 22.
    S. D. Williams, D. M. Curry. “An Analytical and Experimental Study for Surface Heat Flux Determination”. J. Spacecraft, Vol. 14, No. 10, 1977, pp. 632–637.CrossRefGoogle Scholar
  23. 23.
    E. H. Hirschel, A. Koç, S. Riedelbauch. “Hypersonic Flow Past Radiation-Cooled Surfaces”. AIAA-Paper 91-5031, 1991.Google Scholar
  24. 24.
    G. C. Rufolo, D. Tescione, S. Borrelli. “A Multidisciplinary Approach for the Analysis of Heat Shielded Space Structures”. Proc. 4th European Workshop on Hot Structures and Thermal Protection Systems for Space Vehicles, Palermo, Italy, 2002. ESA SP-521, 2003, pp. 231–238.Google Scholar
  25. 25.
    Th. Eggers, Ph. Novelli, M. Haupt. “Design Studies of the JAPHAR Experimental Vehicle for Dual Mode Ramjet Demonstration”. AIAA-Paper 2001-1921, 2001.Google Scholar
  26. 26.
    E. H. Hirschel. “Evaluation of Results of Boundary-Layer Calculations with Regard to Design Aerodynamics”. AGARD-R-741, 1986, pp. 6-1 to 6-29.Google Scholar
  27. 27.
    R. K. Höld, L. Fornasier. “Investigation of Thermal Loads of Hypersonic Vehicles with Emphasis on Surface Radiation Effects”. ICAS-Paper 94-4.4.1, 1994.Google Scholar
  28. 28.
    R. K. Höld. “Modeling of Surface Radiation Effects by a Fictitious Emissivity Coefficient”. V. V. Kudriavtsev, C. R. Kleijn (eds.), Computational Technologies for Fluid/Themal/Chemical Systems with Industrial Applicions, ASME PVP-Vol. 397–1, 1999, pp. 201–208.Google Scholar
  29. 29.
    W. M. Rohsenow (ed.). “Developments in Heat Transfer”. Edward Arnold ltd., London, 1964.zbMATHGoogle Scholar
  30. 30.
    R. Behr. “Hot, Radiation Cooled Surfaces”. Rep. TET-DASA-21-TN-2410, astrium, Munich, Germany, 2002.Google Scholar
  31. 31.
    E. H. Hirschel, Ch. Mundt, F. Monnoyer, M. A. Schmatz. “Reynolds-Number Dependence of Radiation-Adiabatic Wall Temperature”. MBB-FE122-AERO-MT-872, 1990.Google Scholar
  32. 32.
    S. Riedelbauch. “Aerothermodynamische Eigenschaften von Hyperschallströmungen über strahlungsadiabate Oberflächen (Aerothermodynamic Properties of Hypersonic Flows past Radiation-Cooled Surfaces)”. Doctoral Thesis, Technische Universität München, Germany, 1991. Also DLR-FB 91-42, 1991.Google Scholar
  33. 33.
    S. Riedelbauch, E. H. HIrschel. “Aerothermodynamic Properties of Hypersonic Flow over Radiation-Adiabatic Surfaces”. Journal of Aircraft, Vol. 30, No. 6, 1993, pp. 840–846.CrossRefGoogle Scholar
  34. 34.
    J.-A. Désidëri, R. GLowinski, J. Periaux (eds.). “Hypersonic Flows for Reentry Problems”. Volume 1 and 2, Springer, Berlin/Heidelberg/New York, 1991.Google Scholar
  35. 35.
    D. J. Peake, M. Tobak. “Three-Dimensional Interaction and Vortical Flows with Emphasis on High Speeds”. AGARDograph No. 252, 1980.Google Scholar
  36. 36.
    Tobak, M., D. J. Peake. “Topology of Three-Dimensional Separated Flows”. Annual Review of Fluid Mechnics, Vol. 14, 1982, pp. 61–85.MathSciNetCrossRefGoogle Scholar
  37. 37.
    K. C. Wang. “Separating Patterns of Boundary Layer Over an Inclined Body of Revolution”. AIAA Journal, Vol. 10, 1972, pp. 1044–1050.Google Scholar
  38. 38.
    U. Dallmann, A. Hilgenstock, S. Riedelbauch, B. Schulte-Werning, H. Vollmers. “On the Footprints of Three-Dimensional Separated Vortex Flows Around Blunt Bodies. Attempts of Defining and Analyzing Complex Vortex Structures”. AGARD-CP-494, 1991, pp.9-1 to 9-13.Google Scholar

Copyright information

© Springer Berlin Heidelberg 2005

Personalised recommendations