Advertisement

Simulation Means

Keywords

Computational Simulation Hypersonic Flow Flight Vehicle Vehicle Surface Independence Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B. Vos, A. Rizzi, D. Darracq, E. H. Hirschel. “Navier-Stokes Solvers in European Aircraft Design”. Progress in Aerospace Sciences, Vol. 38, 2002, pp. 601–697.CrossRefGoogle Scholar
  2. 2.
    E. H. Hirschel, F. G. J. Kremer. “Technology Development and Verification Plan-Final Report, Slice D”. FESTIP FSS-SCT-RP-0068, 1998.Google Scholar
  3. 3.
    E. H. Hirschel. “Towards the Virtual Product in Aircraft Design?” J. Periaux, M. Champion, J.-J. Gagnepain, O. Pironneau, B. Stouffiet, P. Thomas (eds.), Fluid Dynamics and Aeronautics New Challenges. CIMNE Handbooks on Theory and Engineering Applications of Computational Methods, Barcelona, Spain 2003, pp. 453–464.Google Scholar
  4. 4.
    J. A. van der Bliek. “ETW, a European Resource for the World of Aeronautics. The History of ETW in the Context of European Research and Development Cooperation”. ETW, Cologne, Germany, 1996.Google Scholar
  5. 5.
    D. Schimanski, J. Quest. “Tools and Techniques for High Reynolds Number Testing, Status and Recent Improvements of ETW”. AIAA-Paper 2003-0755, 2003.Google Scholar
  6. 6.
    E. H. Hirschel. “TThermal Surface Effects in Aerothermodynamics”. Proc. Third European Symposium on Aerothermodynamics for Space Vehicles, Noordwijk, The Netherlands, November 24–26, 1998. ESA SP-426, 1999, pp. 17–31.Google Scholar
  7. 7.
    E. H. Hirschel. “Hypersonic Aerodynamics”. Space Course 1993, Vol. 1, Technical University München, 1993, pp. 2-1 to 2-17.Google Scholar
  8. 8.
    V. Y. Neyland. “Scientific and Engineering Problems of Preflight Development of Orbiter”. TsAGI Central Aerohydrodynamic Institute, Moscow, Russia, 1992.Google Scholar
  9. 9.
    E. H. Hirschel. “The Technology Development and Verification Concept of the German Hypersonics Technology Programme”. AGARD R-813, 1986, pp. 12-1 to 12-15.Google Scholar
  10. 10.
    J. J. Bertin, J. Periaux, J. Ballmann (eds.). Advances in Hypersonics, Vol. 3, Computing Hypersonic Flows. Birkhäuser, Boston, 1992.MATHGoogle Scholar
  11. 11.
    A. Eberle, A. Rizzi, E. H. Hirschel. “NNumerical Solutions of the Euler Equations for Steady Flow Problems”. Notes on Numerical Fluid Mechanics, NNFM 34. Vieweg, Braunschweig/Wiesbaden, 1992.Google Scholar
  12. 12.
    C. Hirsch. “Numerical Computation of Internal and External Flows”. Vol. 1, Fundamentals of Numerical Discretization, J. Wiley and Sons, New York, 1988.Google Scholar
  13. 13.
    .R. Löhner. “Applied Computational Fluid Dynamics Techniques”. J. Wiley and Sons, Chichester, U. K., 2001.MATHGoogle Scholar
  14. 14.
    M. Y. Hussaini, B. van Leer, J. van Rosendale (eds.). “Upwind and High-Resolution Schemes”. Springer-Verlag, Berlin/Heidelberg/New York, 1997.MATHGoogle Scholar
  15. 15.
    M. Pandolfi, D. D’Ambrosio. “Numerical Instabilities in Upwind Methods: Analysis and Cures fo the “Carbuncle” Phenomenon”. J. of Computational Physics, Vol. 166, 2001, pp.. 271–301.MathSciNetMATHGoogle Scholar
  16. 16.
    M. Pandolfi, D. D’Ambrosio. “A Critical Analysis of Upwinding”. J. Periaux, M. Champion, J.-J. Gagnepain, O. Pironneau, B. Stoufflet, P. Thomas (eds.), Fluid Dynamics and Aeronautics New Challenges. CIMNE Handbooks on Theory and Engineering Applications of Computational Methods, Barcelona, Spain 2003, pp. 161–177.Google Scholar
  17. 17.
    U. Trottenberg, C. Oosterlee, A. Schüller. “Multigrid”. Academic Press, 2001.Google Scholar
  18. 18.
    R., Radespiel, R. C. Swanson. “Progress with Multigrid Schemes for Hypersonic Flow Problems”. J. of Computational Physics, Vol. 116, 1995, pp. 103–122.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    J.-A. Désidéer, R. Glowinski, J. Periaux (eds.). “Hypersonic Flows for Re-Entry Problems”. Vol. II and III, Springer-Verlag, Berlin/Heidelberg/New York, 1992.Google Scholar
  20. 20.
    S. Menne, C. Weiland, D. D’Ambrosio, M. Pandolfi. “Validation of Real Gas Simulations Using Different Non-Equilibrium Methods”. Computers and Fluids, Vol. 24, 1995, pp. 189–208.CrossRefMATHGoogle Scholar
  21. 21.
    R. T. Davis. “Numerical Solution of the Hypersonic Shock-Layer Equations”. AIAA J., Vol. 8, No. 5, 1970, pp. 843–851.MATHCrossRefGoogle Scholar
  22. 22.
    J. J. Bertin. “State-of-the-Art Engineering Approaches to Flow Field Computations” J. J. Bertin, R. Clowinski, J. Periaux (eds.), Hypersonics, Vol. 2, Computation and Measurement of Hypersonic Flows. Birkhäuser, Boston, 1989, pp. 1–91.Google Scholar
  23. 23.
    K. Oswatitsch. “Gas Dynamics”. Academic Press, New York, 1956.Google Scholar
  24. 24.
    H. W. Liepmann, A. Roshko. “Elements of Gasdynamics”. John Wiley & Sons, New York/ London/ Sidney, 1966.Google Scholar
  25. 25.
    Ch. Mundt, M. Pfitzner, M. A. Schmatz. “Calculation of Viscous Hypersonic Flows Using a Coupled Euler/Second-Order Boundary-Layer Method”. Notes of Numerical Fluid Mechanics, NNFM 29, Vieweg, Braunschweig/Wiesbaden, 1990, pp. 422–433.Google Scholar
  26. 26.
    B. Aupoix, J. Ph. Brazier, J. Cousteix, F. Monnoyer. “Second-Order Effects in Hypersonic Boundary Layers”. J. J. Bertin, J. Periauz, J. Ballmann (eds.), Advances in Hypersonics, Vol. 3, Computing Hypersonic Flows. Birkhäuser, Boston, 1992, pp. 21–61.Google Scholar
  27. 27.
    Ch. Mundt, F. Monnoyer, R. Höld. “Computational Simulation of the Aerothermodynamic Characteristics of the Reentry of HERMES”. AIAA-Paper 93-5069, 1993.Google Scholar
  28. 28.
    S. Borrelli, F. Grasso, M. Marini, J. Periaux (eds.). “Proceedings of the First Europe-US High Speed Flow Field Database Workshop, Naples, Italy”. Published with permission by AIAA, 1998.Google Scholar
  29. 29.
    M. S. Holden (supervisor). “Experimental Database from CUBRC Studies in Hypersonic Laminar and Turbulent Interacting Flows Including Flowfield Chemistry”. Prepared for RTO Code Validation of DSMC and Navier-Stokes Code Validation Studies. Calspan-University at Buffalo Research Center, Buffalo, NY, 2000.Google Scholar
  30. 30.
    J.-A. Désidéri, M. Marini, J. Periaux. “Validation Databases in Fluid Mechanics: from the European Space Shuttle Program HERMES to the European Thematic Network FLOWNET”. J. Periaux, M. Champion, J.-J. Gagnepain, O. Pironneau, B. Stoufflet, P. Thomas (eds.), Fluid Dynamics and Aeronautics New Challenges. CIMNE Handbooks on Theory and Engineering Applications of Computational Methods, Barcelona, Spain 2003, pp. 535–546.Google Scholar
  31. 31.
    J. G. Marvin. “A CFD Validation Roadmap for Hypersonic Flows”. AGARD CP-514, 1992, pp. 17-1 to 17-16.Google Scholar
  32. 32.
    U. B. Mehta. “Guide to Credible Computer Simulations of Fluid Flows”. J. Prop. and Power, Vol. 12, No. 5, 1996, pp. 940–948.Google Scholar
  33. 33.
    J. F. Thompson, B. K. Soni, N. P. Weatherill (eds.). “Handbook of Grid Generation”. CRC Press, Boca Raton/London/New York/Washington D. C., 1999.MATHGoogle Scholar
  34. 34.
    E. H. Hirschel, W. Schwarz. “Mesh Generation for Aerospace CFD Applications”. J. on Surveys on Mathematics for Industry, Vol. 4, 1995, pp. 249–265.MATHGoogle Scholar
  35. 35.
    F. Deister. “Selbstorganisierendes hybrid-kartesisches Netzverfahren zur Berechnung von Strömungen um komplexe Konfigurationen (Self-Organizing Hybrid Cartesian Grid Method for the Computation of Flows past Complex Configurations)”. Doctoral Thesis, Universität Stuttgart, Germany, 2002.Google Scholar
  36. 36.
    M. J. Aftosmis, M. J. Berger, G. Adomavicius. “A Parallel Multilevel Method for Adaptively Refined Cartesian Grids with Embedded Boundaries”. AIAA-Paper 2000-0808, 2000.Google Scholar
  37. 37.
    M. Delanaye, A. Patel, K. Kovalev, B. Léonard, Ch. Hirsch. “From CAD to Adapted Solution for Error Controlled CFD Simulations”. J. Periaux, M. Champion, J.-J. Gagnepain, O. Pironneau, B. Stouffiet, P. Thomas (eds.), Fluid Dynamics and Aeronautics New Challenges. CIMNE Handbooks on Theory and Engineering Applications of Computational Methods, Barcelona, Spain 2003, pp. 465–477.Google Scholar
  38. 38.
    F. Deister, E. H. Hirschel. “Self-Organizing Hybrid Cartesian Grid/Solution System with Multigrid”. AIAA-Paper 2002-0112, 2002.Google Scholar
  39. 39.
    A. A. Mezentsev, Th. Wöhler. “Methods and Algorithms of Automated CAD Repair for Incremental Surface Mehing”. Proc. 8th International Meshing Roundtable, South Lake Tahoe, Cal., October 10 to 13, 1999, pp. 299–307.Google Scholar
  40. 40.
    J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes. “Computer Graphics”. Addison-Wesley Publ. Comp., Reading, Mass. 1996.MATHGoogle Scholar
  41. 41.
    F. Deister, U. Tremel, E. H. Hirschel, H. Rieger. “Automatic Feature-Based Sampling of Native CAD Data for Surface Grid Generation”. C. Breitsamter, B. Laschka, H.-J. Heinemann, R. Hilbig (eds.), New Results in Numerical and Experimental Fluid Mechanics IV. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, NNFM 87, Springer, Berlin/Heidelberg/New York, 2004, pp. 374–381.Google Scholar
  42. 42.
    J. P. Arrington, J. J. Jones (eds.). #x201C;Shuttle Performance: Lessons Learned”. NASA CP-2283, 1983.Google Scholar
  43. 43.
    B. F. Griffith, J. R. Maus, J. T. Best. “Explanation of the Hypersonic Longitudinal Stability Problem-Lessons Learned”. J. P. Arrington, J. J. Jones (eds.), Shuttle Performance: Lessons Learned. NASA CP-2283, Part 1, 1983, pp. 347–380.Google Scholar
  44. 44.
    B. F. Griffith, J. R. Maus, J. T. Best. “Explanation of the Hypersonic Longitudinal Stability Problem-Lessons Learned”. D. A. Throckmorton (ed.), Shuttle Performance: Lessons Learned. NASA CP-3248, Part 1, 1995, pp. 347–380.Google Scholar
  45. 45.
    V. Y. Nevland. “The Convergence of the Orbiter BURAN Flight Test and Prefiight Study Results, and the Choice of a Strategy to Develop a Second Generation Orbiter”. AIAA-Paper 1989-5019, 1989.Google Scholar
  46. 46.
    J. L. Hunt. “Hypersonic Airbreathing Vehicle Design (Focus on Aero-Space Plane)”. J. J. Bertin, R. Glowinski, J. Periauz (eds.), Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkhäser, Boston, 1989, pp. 205–262.Google Scholar
  47. 47.
    J. Arnold, J. F. Wendt “Test Facilities”. AGARD-AR-319, Vol. I, 1996, pp. 8-1 to 8-27.Google Scholar
  48. 48.
    W. Kordulla, J. Muylaert “Inventory of Aerothermodynamic Capabilities in Europe”. IAF Conference 2003, Bremen, Germany. IAC-Paper-03-V.5.07, 2003.Google Scholar
  49. 49.
    J. C. Traineau, C. Pelissier, A. M. Kharitonov, V. M. Fomin, V. I. Lapygin, V. A. Gorelov. “Review of European Facilities for Space Aerothermodynamics”. ONERA, Techn. Rep. RT 1/06302 DMAE, 2003.Google Scholar
  50. 50.
    F. K. Lu, D. E. Marren (eds.). “Advanced Hypersonic Test Facilities”. Vol. 198, Progress in Astronautics and Aeronautics, AIAA, Washington, DC, 2002.Google Scholar
  51. 51.
    R. D. Neumann. “Defining the Aerothermodynamic Methodology”. J. J. Bertin, R. GIowinski, J. Periauz (eds.), Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkhäuser, Boston, 1989, pp. 125–204.Google Scholar
  52. 52.
    J. J. Bertin, R. Glowinski, J. Periaux (eds.). “Hypersonics, Vol. 2, Computation and Measurement of Hypersonic Flows”. Birkhäuser, Boston, 1989.Google Scholar
  53. 53.
    R. K. Matthews. “Hypersonic Wind Tunnel Testing”. J. J. Bertin, J. Periaux, J. Ballmann (eds.), Advances in Hypersonics, Vol. 1, Defining the Hypersonic Environment. Birkhäuser, Boston, 1992, pp. 72–108.Google Scholar
  54. 54.
    N. N. “Hypersonic Experimental and Computational Capability, Improvement and Validation”. AGARD-AR-319, Vol. I, 1996, Vol. II, 1998.Google Scholar
  55. 55.
    D. M. Busunell. “Hypersonic Ground Test Requirements”. F. K. Lu, D. E. Marren (eds.), Advanced Hypersonic Test Facilities. Vol. 198, Progress in Astronautics and Aeronautics, AIAA, Washington, DC, 2002, pp. 1–15.Google Scholar
  56. 56.
    F. K. Lu, D. E. Marren. “Principles of Hypersonic Test Facility Development”. F. K. Lu, D. E. Marren (eds.), Advanced Hypersonic Test Facilities. Vol. 198, Progress in Astronautics and Aeronautics, AIAA, Washington, DC, 2002, pp. 17–27.Google Scholar
  57. 57.
    W. E. Gibson, P. V. Marrone. “A Similitude for Non-Equilibrium Phenomena in Hypersonic Flight”. AGARDograph 68, 1964, pp. 105–131.Google Scholar
  58. 58.
    R. J. Stalker. “Hypervelocity Aerodynamics with Chemical Nonequilibrium”. Annual Review of Fluid Mechnics, Vol. 21, 1989, pp. 37–60.MATHCrossRefGoogle Scholar
  59. 59.
    A. Henckels, F. Maurer. “Hypersonic Wind Tunnel Testing with Simulation of Local Hot Wall Boundary Layer and Radiation Cooling”. Zeitschrift für Flugwissenschaften und Weltraumforschung (ZFW), Vol. 18, 1994, pp. 160–166.Google Scholar
  60. 60.
    G. Simeonides, X. Gibergy, X. de la Casa, J. M. Charbonnier. “Combined Convective Heating-Radiation Cooling Analysis for Aerodynamic Surfaces in Hypersonic Flow and Experimental Simulation of Temperature Viscous Effects”. Proc. EUROTHERM SEMINAR 55, “Heat Transfer in Single Phase Flows 5”. NTUAthens, Greece, 1997.Google Scholar
  61. 61.
    W. C. Woods, J. P. Arrington, H. H. Hamilton II. “A Review of Preflight Estimates of Real-Gas Effects on Space Shuttle Aerodynamic Characteristics”. J. P. Arrington, J. J. Jones (eds.), Shuttle Performance: Lessons Learned. NASA CP-2283, Part 1, 1983, pp. 309–346.Google Scholar
  62. 62.
    D. K. Prabhu, P. E. Papadopoulos, C. B. Davies, M. J. Wright, R. D. Mcdaniel. “Shuttle Orbiter Contingency Abort Aerodynamics, II: Real-Gas Effects and High Angles of Attack”. AIAA-Paper 2003-1248, 2003.Google Scholar

Copyright information

© Springer Berlin Heidelberg 2005

Personalised recommendations