Advertisement

Survey of Wave Types and Characteristics

  • L. Cremer
  • M. Heckl
  • B.A.T. Petersson

Keywords

WKLV FDVH 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [3.1]
    Morse P.M., 1948. Vibration and sound, Ch. 4. McGraw-Hill, New York NYGoogle Scholar
  2. [3.2]
    Rayleigh J.W.S., 1885. On waves propagated along the plane surface of an elastic solid. Proc. Mathematical Society London, 17, 4–11CrossRefGoogle Scholar
  3. [3.3]
    Schoch A., 1950. Periodische Wellen im schubspannungsfreien planparallelen Schichten. Ergebnisse der exakten Naturwissenschaften, 23, p. 172CrossRefGoogle Scholar
  4. [3.4]
    Achenbach J.D., 1975. Wave propagation in elastic solids. North-Holland, AmsterdamGoogle Scholar
  5. [3.5]
    Naake H.J. and Tamm K., 1958. Sound propagation in plates and rods of rubber-elastic materials. Acustica, 8, p. 65Google Scholar
  6. [3.6]
    Götz J., 1943. Über den Schalldurchgang durch Metallplatten in Flüssigkeiten bei schrägem Einfall einer Welle. Akustische Zeitschrift, 8, p. 145Google Scholar
  7. [3.7]
    Firestone F.A., 1948. Tricks with the supersonic reflectoscope. Nondestructive testing, 7, p. 5Google Scholar
  8. [3.8]
    Tamm K. and Weiss O., 1959. Untersuchungen über periodische Wellen, exponentielle und komplexe Nahfelder im begrenzten Festkörper. Acustica, 9, p. 275Google Scholar
  9. [3.9]
    Epstein P.S., 1942. On the theory of elastic vibrations in plates and shells. Journal of Mathematics and Physics, 21, p. 198MathSciNetzbMATHGoogle Scholar
  10. [3.10]
    Huber M.T., 1914. Die Grundlagen einer rationellen Berechnung der kreuzweise bewehrten Eisenbetonplatte. Zeitschrift des Östereichischen Ingenieur-und Architekten-Vereins, 30, p. 557Google Scholar
  11. [3.11]
    Hearmon R.F.S. and Adams E.H., 1952. The bending and twisting of an isotropic plates. British Journal of Applied Physics, 3, p. 155Google Scholar
  12. [3.12]
    Timoshenko S.P. and Woinowsky-Krieger S., 1959. Theory of plates and shells (2nd ed.), Ch. 11. McGraw-Hill, AucklandGoogle Scholar
  13. [3.13]
    Heckl M., 1960. Untersuchungen an orthotropen Platten. Acustica, 10, 109–115MathSciNetzbMATHGoogle Scholar
  14. [3.14]
    Heckl M., 1990. Einfache Anwendung des Hamiltonschen Prinzips bei Körperschallproblemen. Acustica, 72, 189–196zbMATHGoogle Scholar
  15. [3.15]
    Mindlin R.D., 1951. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics, 18, p. 155Google Scholar
  16. [3.16]
    Junger M.L. and Feit D., 1972. Sound structures and their interaction, Ch. 9. MIT Press, Cambridge MAzbMATHGoogle Scholar
  17. [3.17]
    Love A.E.H., 1948. A treatise on the mathematical theory of elasticity, Ch. XXIII. Dover Publications, New York NYGoogle Scholar
  18. [3.18]
    Rayleigh J.W.S., 1945. Theory of sound (2nd ed.), Vol. 1, §235e. Dover Publications, New York NYzbMATHGoogle Scholar
  19. [3.19]
    Cremer L., 1955. Theorie der Luftschalldämmung zylindrischer Schalen. Acustica, 5, p. 245Google Scholar
  20. [3.20]
    Donell L.H., 1939. Discussion of thin shell theory. Proc. 5th International Congress on Applied Mechanics, p. 66Google Scholar
  21. [3.21]
    Leissa A.W., 1973. Vibration of shells. NASA-SP 288Google Scholar
  22. [3.22]
    Heckl M., 1962. Vibrations of point-driven cylindrical shells. Journal of the Acoustical Society of America, 34, 1553–1557CrossRefGoogle Scholar
  23. [3.23]
    Cremer L., 1984. Physics of the violin, §3.3. MIT Press, Cambridge MAGoogle Scholar
  24. [3.24]
    Reissner E., 1955. On transverse vibration of thin, shallow elastic shells. Quarterly Applied Mathematics, 13, p. 169MathSciNetzbMATHGoogle Scholar
  25. [3.25]
    Noiseux D.U., 1970. Measurement of power flow in uniform beams and plates. Journal of the Acoustical Society of America, 47, p. 238CrossRefGoogle Scholar
  26. [3.26]
    Pavic G., 1976. Measurement of structure borne wave intensity, part I: Formulation of the methods. Journal of Sound and Vibration, 49, p. 221CrossRefGoogle Scholar
  27. [3.27]
    Pavic G., 1986. The influence of curvature on structure-borne acoustical power propagation in a cylindrical circular shell. Proc. 12th International Congress on Acoustics, Paper D6-6. TorontoGoogle Scholar
  28. [3.28]
    Fahy F.J., 1995. Sound intensity (2nd ed.). E & FN Spon, LondonGoogle Scholar
  29. [3.29]
    Maysenhölder W., 1994. Körperschallenergie. Grundlagen zur Berechnung von Energiedichten und Intensitäten. S. Hirzel Verlag, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • L. Cremer
    • 1
  • M. Heckl
    • 1
  • B.A.T. Petersson
    • 1
  1. 1.FG Technische AkustikTechnische Universität BerlinBerlinGermany

Personalised recommendations