Single-Molecule Imaging of Diffusion, Recruitment, and Activation of Signaling Molecules in Living Cells

  • Akihiro Kusumi
  • Hideji Murakoshi
  • Kotono Murase
  • Takahiro Fujiwara
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 8)


Video Rate Membrane Skeleton Membrane Molecule Epidermal Growth Factor Stimulation Compartment Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bussell SJ, Hammer DA, Koch DL (1994) The effect of hydrodynamic interactions on the tracer and gradient diffusion of integral membrane-proteins in lipid bilayers. J Fluid Mech 258:167–190Google Scholar
  2. Bussell SJ, Koch DL, Hammer DA (1995) Effect of hydrodynamic interactions on the diffusion of integral membrane proteins: diffusion in plasma membranes. Biophys J 68:1836–1849PubMedGoogle Scholar
  3. De Brabander M, Geuens G, Nuydens R, Moeremans M, De Mey J (1985) Probing microtubule-dependent intracellular motility with nanometre particle video ultramicroscopy (nanovid ultramicroscopy). Cytobios 43:273–283PubMedGoogle Scholar
  4. De Brabander M, Nuydens R, Geerts H, Hopkins CR (1988) Dynamic behavior of the transferrin receptor followed in living epidermoid carcinoma (A431) cells with nanovid microscopy. Cell Motil Cytoskeleton 9:30–47CrossRefPubMedGoogle Scholar
  5. De Brabander M, Nuydens R, Ishihara A, Holifield B, Jacobson K, Geerts H (1991) Lateral diffusion and retrograde movements of individual cell surface components on single motile cells observed with nanovid microscopy. J Cell Biol 112:111–124CrossRefPubMedGoogle Scholar
  6. Draganescu A, Hodawadekar SC, Gee KR, Brenner C (2000) Fhit-nucleotide specificity probed with novel fluorescent and fluorogenic substrates. J Biol Chem 275:4555–4560CrossRefPubMedGoogle Scholar
  7. Feder TJ, Brust-Mascher I, Slattery JP, Baird B, Webb WW (1996) Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys J 70:2767–2773PubMedGoogle Scholar
  8. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157:1071–1081CrossRefPubMedGoogle Scholar
  9. Gamberucci A, Innocenti B, Fulceri R, Banhegyi G, Giunti R, Pozzan T, Benedetti A (1994) Modulation of Ca2+ influx dependent on store depletion by intracellular adenine-guanine nucleotide levels. J Biol Chem 269:23597–23602PubMedGoogle Scholar
  10. Gelles J, Schnapp BJ, Sheetz MP (1988) Tracking kinesin-driven movements with nanometre-scale precision. Nature 331:450–453CrossRefPubMedGoogle Scholar
  11. Ghosh RN, Webb WW (1994) Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys J 66:1301–1318PubMedGoogle Scholar
  12. Harms GS, Cognet L, Lommerse PH, Blab GA, Kahr H, Gamsjager R, Spaink HP, Soldatov NM, Romanin C, Schmidt T (2001) Single-molecule imaging of l-type Ca(2+) channels in live cells. Biophys J 81:2639–2646PubMedGoogle Scholar
  13. Hegener O, Prenner L, Runkel F, Baader SL, Kappler J, Haberlein H (2004) Dynamics of beta2-adrenergic receptor-ligand complexes on living cells. Biochemistry 43:6190–6199CrossRefPubMedGoogle Scholar
  14. Hibino K, Watanabe TM, Kozuka J, Iwane AH, Okada T, Kataoka T, Yanagida T, Sako Y (2003) Single-and multiple-molecule dynamics of the signaling from H-Ras to cRaf-1 visualized on the plasma membrane of living cells. Chem Phys Chem 4:748–753PubMedGoogle Scholar
  15. Iino R, Kusumi A (2001) Single-fluorophore dynamic imaging in living cells. J Fluorescence 11:187–195CrossRefGoogle Scholar
  16. Iino R, Koyama I, Kusumi A (2001) Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J 80:2667–2677PubMedGoogle Scholar
  17. Kobayashi T, Storrie B, Simons K, Dotti CG (1992) A functional barrier to movement of lipids in polarized neurons. Nature 359:647–650CrossRefPubMedGoogle Scholar
  18. Krengel U, Schlichting L, Scherer A, Schumann R, Frech M, John J, Kabsch W, Pai EF, Wittinghofer A (1990) Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell 62:539–548CrossRefPubMedGoogle Scholar
  19. Kucik DF, Elson EL, Sheetz MP (1989) Forward transport of glycoproteins on leading lamelli-podia in locomoting cells. Nature 340:315–317CrossRefPubMedGoogle Scholar
  20. Kusumi A, Sako Y (1996) Cell surface organization by the membrane skeleton. Curr Opin Cell Biol 8:566–574CrossRefPubMedGoogle Scholar
  21. Kusumi A, Sako Y, Yamamoto M (1993) Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65:2021–2040PubMedGoogle Scholar
  22. Li W, Han M, Guan KL (2000) The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf. Genes Dev 14:895–900PubMedGoogle Scholar
  23. Lommerse PH, Blab GA, Cognet L, Harms GS, Snaar-Jagalska BE, Spaink HP, Schmidt T (2004) Single-molecule imaging of the H-ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys J 86:609–616PubMedGoogle Scholar
  24. Mashanov GI, Tacon D, Peckham M, Molloy JE (2004) The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by imaging single molecules in live mouse myoblasts. J Biol Chem 279:15274–15280CrossRefPubMedGoogle Scholar
  25. McEwen D, Gee K, Kang H, Neubig R (2001) Fluorescent BODIPY-GTP analogs: real-time measurement of nucleotide binding to G proteins. Anal Biochem 291:109–117CrossRefPubMedGoogle Scholar
  26. Mineo C, James GL, Smart EJ, Anderson RG (1996) Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J Biol Chem 271:11930–11935CrossRefPubMedGoogle Scholar
  27. Murakoshi H, Iino R, Kobayashi T, Fujiwara T, Ohshima C, Yoshimura A, Kusumi A (2004) Singlemolecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci USA 101: 7317–7322CrossRefPubMedGoogle Scholar
  28. Murase K, Fujiwara T, Umemura Y, Suzuki K, Iino R, Yamashita H, Saito M, Murakoshi H, Ritchie K, Kusumi A (2004) Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys J 86:4075–4093CrossRefPubMedGoogle Scholar
  29. Nagle JF (1992) Long tail kinetics in biophysics? Biophys J 63:366–370PubMedGoogle Scholar
  30. Nakada C, Ritchie K, Oba Y, Nakamura M, Hotta Y, Iino R, Kasai RS, Yamaguchi K, Fujiwara T, Kusumi A (2003) Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization. Nat Cell Biol 5:626–632CrossRefPubMedGoogle Scholar
  31. Nelson S, Horvat RD, Malvey J, Roess DA, Barisas BG, Clay CM (1999) Characterization of an intrinsically fluorescent gonadotropin-releasing hormone receptor and effects of ligand binding on receptor lateral diffusion. Endocrinology 140:950–957CrossRefPubMedGoogle Scholar
  32. Niv H, Gutman O, Henis YI, Kloog Y (1999) Membrane interactions of a constitutively active GFPKi-Ras 4B and their role in signaling. Evidence from lateral mobility studies. J Biol Chem 274:1606–1613CrossRefPubMedGoogle Scholar
  33. Niv H, Gutman O, Kloog Y, Henis YI (2002) Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J Cell Biol 157:865–872CrossRefPubMedGoogle Scholar
  34. Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395PubMedGoogle Scholar
  35. Paller MS (1994) Lateral mobility of Na,K-ATPase and membrane lipids in renal cells. Importance of cytoskeletal integrity. J Membr Biol 142:127–135PubMedGoogle Scholar
  36. Parton RG, Hancock JF (2004) Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol 14:141–147CrossRefPubMedGoogle Scholar
  37. Paz A, Haklai R, Elad-Sfadia G, Ballan E, Kloog Y (2001) Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20:7486–7493CrossRefPubMedGoogle Scholar
  38. Peters R, Cherry RJ (1982) Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbrück equations. Proc Natl Acad Sci USA 79:4317–4321PubMedGoogle Scholar
  39. Prior IA, Harding A, Yan J, Sluimer J, Parton RG, Hancock JF (2001) GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol 3:368–375CrossRefPubMedGoogle Scholar
  40. Prior IA, Muncke C, Parton RG, Hancock JF (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160:165–170CrossRefPubMedGoogle Scholar
  41. Rebollo A, Martinez AC (1999) Ras proteins: recent advances and new functions. Blood 94:2971–2980PubMedGoogle Scholar
  42. Rotblat B, Prior IA, Muncke C, Parton RG, Kloog Y, Henis YI, Hancock JF (2004) Three separable domains regulate GTP-dependent association of H-ras with the plasma membrane. Mol Cell Biol 24:6799–6810CrossRefPubMedGoogle Scholar
  43. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682CrossRefPubMedGoogle Scholar
  44. Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E, Rolls B, Hancock JF, Parton RG (1999) Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterolrich plasma membrane domains. Nat Cell Biol 1:98–105CrossRefPubMedGoogle Scholar
  45. Saffman PG, Delbrück M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci USA 72:3111–3113PubMedGoogle Scholar
  46. Sako Y, Kusumi A (1994) Compartmentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis. J Cell Biol 125:1251–1264CrossRefPubMedGoogle Scholar
  47. Sako Y, Kusumi A (1995) Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether. J Cell Biol 129:1559–1574CrossRefPubMedGoogle Scholar
  48. Sako Y, Nagafuchi A, Tsukita S, Takeichi M, Kusumi A (1998) Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton. J Cell Biol 140:1227–1240CrossRefPubMedGoogle Scholar
  49. Sako Y, Sato SB, Ohnishi S (1990) Subpopulations of endosomes generated at sequential stages in the endocytic pathway of asialoganglioside-containing ferrite ligands in rat liver. J Biochem (Tokyo) 107:846–853PubMedGoogle Scholar
  50. Sako Y, Minoghchi S, Yanagida T (2000) Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol 2:168–172CrossRefPubMedGoogle Scholar
  51. Satoh T, Nakafuku M, Kaziro Y (1992) Function of Ras as a molecular switch in signal transduction. J Biol Chem 267:24149–24152PubMedGoogle Scholar
  52. Saxton MJ (1989) The spectrin network as a barrier to lateral diffusion in erythrocytes. A percolation analysis. Biophys J 55:21–28PubMedGoogle Scholar
  53. Saxton MJ (1990) The membrane skeleton of erythrocytes. A percolation model. Biophys J 57:1167–1177PubMedGoogle Scholar
  54. Saxton MJ (1994) Single-particle tracking: models of directed transport. Biophys J 67:2110–2119PubMedGoogle Scholar
  55. Saxton MJ (1996) Anomalous diffusion due to binding: a Monte Carlo study. Biophys J 70:1250–1262PubMedGoogle Scholar
  56. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399CrossRefPubMedGoogle Scholar
  57. Schmidt K, Nichols BJ (2004) A barrier to lateral diffusion in the cleavage furrow of dividing mammalian cells. Curr Biol 14:1002–1006CrossRefPubMedGoogle Scholar
  58. Schmidt T, Schütz GJ, Baumgartner W, Grüber HJ, Schindler H (1995) Characterization of photophysics and mobility of single molecules in a fluid lipid-membrane. J Phys Chem 99:17662–17668CrossRefGoogle Scholar
  59. Schnapp BJ, Gelles J, Sheetz MP (1988) Nanometer-scale measurements using video light microscopy. Cell Motil Cytoskeleton 10:47–53CrossRefPubMedGoogle Scholar
  60. Schütz GJ, Kada G, Pastushenko VP, Schindler H (2000a) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19:892–901CrossRefPubMedGoogle Scholar
  61. Schütz GJ, Sonnleitner M, Hinterdorfer P, Schindler H (2000b) Single molecule microscopy of biomembranes (review). Mol Membr Biol 17:17–29CrossRefPubMedGoogle Scholar
  62. Sheetz MP (1983) Membrane skeletal dynamics’ role in modulation of red-cell deformability, mobility of transmembrane proteins, and shape. Semin Hematol 20:175–188PubMedGoogle Scholar
  63. Sheetz MP, Schindler M, Koppel DE (1980) Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes. Nature 285:510–511CrossRefPubMedGoogle Scholar
  64. Sheetz MP, Turney S, Qian H, Elson EL (1989) Nanometre-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature 340:284–288CrossRefPubMedGoogle Scholar
  65. Sieburth DS, Sun Q, Han M (1998) SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans. Cell 94:119–130CrossRefPubMedGoogle Scholar
  66. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731PubMedGoogle Scholar
  67. Takeuchi M, Miyamoto H, Sako Y, Komizu H, Kusumi A (1998) Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy. Biophys J 74:2171–2183PubMedGoogle Scholar
  68. Tank DW, Wu ES, Webb WW (1982) Enhanced molecular diffusibility in muscle membrane blebs: release of lateral constraints. J Cell Biol 92:207–212CrossRefPubMedGoogle Scholar
  69. Tomishige M, Sako Y, Kusumi A (1998) Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. J Cell Biol 142:989–1000CrossRefPubMedGoogle Scholar
  70. Tsuji A, Ohnishi S (1986) Restriction of the lateral motion of band 3 in the erythrocyte membrane by the cytoskeletal network: dependence on spectrin association state. Biochemistry 25:6133–6139CrossRefPubMedGoogle Scholar
  71. Tsuji A, Kawasaki K, Ohnishi S, Merkle H, Kusumi A (1988) Regulation of band 3 mobilities in erythrocyte ghost membranes by protein association and cytoskeletal meshwork. Biochemistry 27:7447–7452CrossRefPubMedGoogle Scholar
  72. Vrljic M, Nishimura SY, Brasselet S, Moerner WE, McConnell HM (2002) Translational diffusion of individual class II MHC membrane proteins in cells. Biophys J 83:2681–2692PubMedGoogle Scholar
  73. Wakatsuki T, Schwab B, Thompson NC, Elson EL (2001) Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J Cell Sci 114:1025–1036PubMedGoogle Scholar
  74. Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, Tsuneoka M, Komiya S, Baron R, Yoshimura A (2001) Spred is a Sprouty-related suppressor of Ras signalling. Nature 412:647–651CrossRefPubMedGoogle Scholar
  75. Winckler B, Forscher P, Mellman I (1999) A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature 397:698–701CrossRefPubMedGoogle Scholar
  76. Wu C, Butz S, Ying Y, Anderson RG (1997) Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane. J Biol Chem 272:3554–3559CrossRefPubMedGoogle Scholar
  77. Wu ES, Tank DW, Webb WW (1982) Unconstrained lateral diffusion of concanavalin A receptors on bulbous lymphocytes. Proc Natl Acad Sci USA 79:4962–4966PubMedGoogle Scholar
  78. Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Akihiro Kusumi
  • Hideji Murakoshi
  • Kotono Murase
  • Takahiro Fujiwara

There are no affiliations available

Personalised recommendations