Skip to main content

Non-Random Patterns of Membrane Proteins and Their Roles in Transmembrane Signaling

  • Chapter

Part of the Springer Series in Biophysics book series (BIOPHYSICS,volume 8)

Keywords

  • Lipid Raft
  • Fluorescence Resonance Energy Transfer
  • Uveal Melanoma
  • Fluorescence Correlation Spectroscopy
  • Immunological Synapse

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-26511-2_3
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-26511-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson HA, Hiltbold EM, Roche PA (2000) Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol 1:156–162

    CrossRef  PubMed  Google Scholar 

  • Bacia K, Schwille P (2003) A dynamic view of cellular processes by in vivo fluorescence auto-and cross-correlation spectroscopy. Methods 29:74–85

    CrossRef  PubMed  Google Scholar 

  • Bacia K, Majoul IV, Schwille P (2002) Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis. Biophys J 83:1184–1193

    PubMed  Google Scholar 

  • Bacsó Z, Bene L, Damjanovich L, Damjanovich S (2002) INF-gamma rearranges membrane topography of MHC-I and ICAM-1 in colon carcinoma cells. Biochem Biophys Res Commun 290:635–640

    CrossRef  PubMed  Google Scholar 

  • Bene L, Balazs M, Matkó J, Most J, Dierich MP, Szöllősi J, Damjanovich S (1994) Lateral organization of the ICAM-1 molecule at the surface of human lymphoblasts: a possible model for its co-distribution with the IL-2 receptor, class I and class II HLA molecules. Eur J Immunol 24:2115–2123

    PubMed  Google Scholar 

  • Bene L, Bodnár A, Damjanovich S, Vámosi G, Bacsó Z, Aradi J, Berta A, Damjanovich J (2004) Membrane topography of HLA I, HLA II, and ICAM-1 is affected by IFN-gamma in lipid rafts of uveal melanomas. Biochem Biophys Res Commun 322:678–683

    CrossRef  PubMed  Google Scholar 

  • Bodnár A, Jenei A, Bene L, Damjanovich S, Matkó J (1996) Modification of membrane cholesterol level affects expression and clustering of class I HLA molecules at the surface of JY human lymphoblasts. Immunol Lett 54:221–226

    CrossRef  PubMed  Google Scholar 

  • Bodnár A, Bacsó Z, Jenei A, Jovin TM, Edidin M, Damjanovich S, Matkó J (2003) Class I HLA oligomerization at the surface of B cells is controlled by exogenous beta(2)-microglobulin: implications in activation of cytotoxic T lymphocytes. Int Immunol 15:331–339

    CrossRef  PubMed  Google Scholar 

  • Boniface J, Rabinowitz J, Wülfing C, Hampl J, Reich Z, Altman J, Kantor R, Beeson C, McConnell H, Davis M (1998) Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands. Immunity 9:459–466

    CrossRef  PubMed  Google Scholar 

  • Bromley SK, Burack WR, Johnson KG, Somersalo K, Sims TN, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (2001) The immunological synapse. Annu Rev Immunol 19:375–396

    CrossRef  PubMed  Google Scholar 

  • Chakrabarti A, Matkó J, Rahman NA, Barisas BG, Edidin M (1992) Self-association of class I major histocompatibility complex molecules in liposome and cell surface membranes. Biochemistry 31:7182–7189

    CrossRef  PubMed  Google Scholar 

  • Clegg RM (1996) Fluorescence resonance energy transfer (FRET). In: Wang XF, Herman B (eds) Fluorescence imaging spectroscopy and microscopy. Wiley, New York, pp 179–252

    Google Scholar 

  • Cochran J, Cameron T, Stern L (2000) The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12:241–250

    CrossRef  PubMed  Google Scholar 

  • Damjanovich S, Bahr W, Jovin TM (1977) The functional and fluorescence properties of Escherichia coli RNA polymerase reacted with fluorescamine. Eur J Biochem 72:559–569

    CrossRef  PubMed  Google Scholar 

  • Damjanovich S, Somogyi B, Trón L (1981) Macromolecular dynamics and information transfer. Adv Physiol Sci 30:9–15

    Google Scholar 

  • Damjanovich S, Trón L, Szöllősi J, Zidovetzki R, Vaz WL, Regateiro F, Arndt-Jovin DJ, Jovin TM (1983) Distribution and mobility of murine histocompatibility H-2Kk antigen in the cytoplasmic membrane. Proc Natl Acad Sci USA 80:5985–5989

    PubMed  Google Scholar 

  • Damjanovich S, Mátyus L, Balazs M, Gáspár R, Krasznai Z, Pieri C, Szöllősi J, Trón L (1992) Dynamic physical interactions of plasma membrane molecules generate cell surface patterns and regulate cell activation processes. Immunobiology 185:337–349

    PubMed  Google Scholar 

  • Damjanovich S, Vereb G, Schaper A, Jenei A, Matkó J, Starink JP, Fox GQ, Arndt-Jovin DJ, Jovin TM (1995) Structural hierarchy in the clustering of HLA class I molecules in the plasma membrane of human lymphoblastoid cells. Proc Natl Acad Sci USA 92:1122–1126

    PubMed  Google Scholar 

  • Damjanovich S, Bene L, Matkó J, Alileche A, Goldman CK, Sharrow S, Waldmann TA (1997a) Preassembly of interleukin 2 (IL-2) receptor subunits on resting Kit 225 K6 T cells and their modulation by IL-2, IL-7, and IL-15: a fluorescence resonance energy transfer study. Proc Natl Acad Sci USA 94:13134–13139

    CrossRef  PubMed  Google Scholar 

  • Damjanovich S, Gáspár RJ, Pieri C (1997b) Dynamic receptor superstructures at the plasma membrane. Q Rev Biophys 30:67–106

    CrossRef  PubMed  Google Scholar 

  • Damjanovich S, Matkó J, Mátyus L, Szabo G Jr, Szöllősi J, Pieri JC, Farkas T, Gáspár R Jr (1998) Supramolecular receptor structures in the plasma membrane of lymphocytes revealed by flow cytometric energy transfer, scanning force-and transmission electron-microscopic analyses. Cytometry 33:225–233

    CrossRef  PubMed  Google Scholar 

  • Damjanovich S, Bene L, Matkó J, Mátyus L, Krasznai Z, Szabo G, Pieri C, Gáspár RJ, Szöllősi J (1999) Two-dimensional receptor patterns in the plasma membrane of cells. A critical evaluation of their identification, origin and information content. Biophys Chem 82:99–108

    CrossRef  Google Scholar 

  • Damjanovich S, Mátyus L, Damjanovich L, Bene L, Jenei A, Matkó J, Gáspár R, Szöllősi J (2002) Does mosaicism of the plasma membrane at molecular and higher hierarchical levels in human lymphocytes carry information on the immediate history of cells? Immunol Lett 82:93–99

    CrossRef  PubMed  Google Scholar 

  • Daniels MA, Jameson SC (2000) Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J Exp Med 191:335–345

    CrossRef  PubMed  Google Scholar 

  • Demaria S, Schwab R, Gottesman S, Bushkin Y (1994) Soluble β2-microglobulin-free class I heavy chains are released from the surface of activated and leukemia cells by a metalloprotease. J Biol Chem 269:6689–6694

    PubMed  Google Scholar 

  • Edidin M (1993) Patches and fences: probing for plasma membrane domains. J Cell Sci Suppl 17:165–169

    PubMed  Google Scholar 

  • Edidin M (1997) Lipid microdomains in cell surface membranes. Curr Opin Struct Biol 7:528–532

    CrossRef  PubMed  Google Scholar 

  • Edidin M (2001) Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell Biol 11:492–496

    CrossRef  PubMed  Google Scholar 

  • Edidin M (2003) The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32:257–283

    CrossRef  PubMed  Google Scholar 

  • Edidin M, Reiland J (1990) Dynamic measurements of the associations between class I MHC antigens and insulin receptors. Mol Immunol 27:1313–1317

    CrossRef  PubMed  Google Scholar 

  • Eicher DM, Damjanovich S, Waldmann TA (2002) Oligomerization of IL-2Ralpha. Cytokine 17:82–90

    CrossRef  PubMed  Google Scholar 

  • Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. Conceptual basis and theory. Biopolymers 13:1–27

    CrossRef  Google Scholar 

  • Elson EL, Schlessinger J, Koppel DE, Axelrod D, Webb WW (1976) Measurement of lateral transport on cell surfaces. Prog Clin Biol Res 9:137–147

    PubMed  Google Scholar 

  • Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 2:55–75

    Google Scholar 

  • Friedl P, Storim J (2004) Diversity in immune-cell interactions: states and functions of the immunological synapse. Trends Cell Biol 14:557–567

    CrossRef  PubMed  Google Scholar 

  • Frye LD, Edidin M (1970) The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci 7:319–335

    PubMed  Google Scholar 

  • Gheber LA, Edidin M (1999) A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicle traffic. Biophys J 77:3163–3175

    PubMed  Google Scholar 

  • Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227

    CrossRef  PubMed  Google Scholar 

  • Hajdu P, Varga Z, Pieri C, Panyi G, Gáspár R Jr (2003) Cholesterol modifies the gating of Kv1.3 in human T lymphocytes. Pflugers Arch 445:674–682

    PubMed  Google Scholar 

  • Harel-Bellan A, Krief P, Rimsky L, Farrar WL, Mishal Z (1990) Flow cytometry resonance energy transfer suggests an association between low-affinity interleukin 2 binding sites and HLA class I molecules. Biochem J 268:35–40

    PubMed  Google Scholar 

  • Hoessli DC, Ilangumaran S, Soltermann A, Robinson PJ, Borisch B, Nasir UD (2000) Signaling through sphingolipid microdomains of the plasma membrane: the concept of signaling platform. Glycoconj J 17:191–197

    CrossRef  PubMed  Google Scholar 

  • Horejsi V (2002) Membrane rafts in immunoreceptor signaling: new doubts, new proofs? Trends Immunol 23:562–564

    CrossRef  PubMed  Google Scholar 

  • Horejsi V (2003) The roles of membrane microdomains (rafts) in T cell activation. Immunol Rev 191:148–164

    CrossRef  PubMed  Google Scholar 

  • Jenei A, Varga S, Bene L, Mátyus L, Bodnár A, Bacsó Z, Pieri C, Gáspár RJ, Farkas T, Damjanovich S (1997) HLA class I and II antigens are partially co-clustered in the plasma membrane of human lymphoblastoid cells. Proc Natl Acad Sci USA 94:7269–7274

    CrossRef  PubMed  Google Scholar 

  • Klausner RD, Lippincott-Schwartz J, Bonifacino JS (1990) The T cell antigen receptor: insights into organelle biology. Annu Rev Cell Biol 6:403–431

    CrossRef  PubMed  Google Scholar 

  • Kusumi A, Sako Y (1996) Cell surface organization by the membrane skeleton. Curr Opin Cell Biol 8:566–574

    CrossRef  PubMed  Google Scholar 

  • Lemmon MA, Engelman DM (1994) Specificity and promiscuity in membrane helix interactions. Q Rev Biophys 27:157–218

    PubMed  Google Scholar 

  • Liegler T, Szöllősi J, Hyun W, Goodenow RS (1991) Proximity measurements between H-2 antigens and the insulin receptor by fluorescence energy transfer: evidence that a close association does not influence insulin binding. Proc Natl Acad Sci USA 88:6755–6759

    PubMed  Google Scholar 

  • Lucero HA, Robbins PW (2004) Lipid rafts-protein association and the regulation of protein activity. Arch Biochem Biophys 426:208–224

    CrossRef  PubMed  Google Scholar 

  • Matkó J, Edidin M (1997) Energy transfer methods for detecting molecular clusters on cell surfaces. Methods Enzymol 278:444–462

    PubMed  Google Scholar 

  • Matkó J, Szöllősi J (2002) Landing of immune receptors and signal proteins on lipid rafts: a safe way to be spatio-temporally coordinated? Immunol Lett 82:3–15

    CrossRef  PubMed  Google Scholar 

  • Matkó J, Bushkin Y, Wei T, Edidin M (1994) Clustering of class I HLA molecules on the surfaces of activated and transformed human cells. J Immunol 152:3353–3360

    PubMed  Google Scholar 

  • Matkó J, Bodnár A, Vereb G, Bene L, Vámosi G, Szentesi G, Szöllősi J, Gáspár R, Horejsi V, Waldmann TA, Damjanovich S (2002) GPI-microdomains (membrane rafts) and signaling of the multi-chain interleukin-2 receptor in human lymphoma/leukemia T cell lines. Eur J Biochem 269:1199–1208

    CrossRef  PubMed  Google Scholar 

  • Mátyus L, Bene L, Heiligen H, Rausch J, Damjanovich S (1995) Distinct association of transferrin receptor with HLA class I molecules on HUT-102B and JY cells. Immunol Lett 44:203–208

    CrossRef  PubMed  Google Scholar 

  • Monks C, Freiberg B, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82–86

    CrossRef  PubMed  Google Scholar 

  • Nagy P, Mátyus L, Jenei A, Panyi G, Varga S, Matkó J, Szöllősi J, Gáspár R, Jovin TM, Damjanovich S (2001) Cell fusion experiments reveal distinctly different association characteristics of cell-surface receptors. J Cell Sci 114:4063–4071

    PubMed  Google Scholar 

  • Panyi G, Deutsch C (1996) Assembly and suppression of endogenous Kv1.3 channels in human T cells. J Gen Physiol 107:409–420

    CrossRef  PubMed  Google Scholar 

  • Panyi G, Sheng Z-F, Tu L-W, Deutsch C (1995) C-type inactivation of a voltage-gated K+ channel occurs by a cooperative mechanism. Biophys J 69:896–904

    PubMed  Google Scholar 

  • Panyi G, Bagdány M, Bodnár A, Vámosi G, Szentesi G, Jenei A, Mátyus L, Varga S, Waldmann TA, Gáspár R, Damjanovich S (2003) Colocalization and nonrandom distribution of Kv1.3 potassium channels and CD3 molecules in the plasma membrane of human T lymphocytes. Proc Natl Acad Sci USA 100:2592–2597

    CrossRef  PubMed  Google Scholar 

  • Panyi G, Vámosi G, Bacsó Z, Bagdány M, Bodnár A, Varga Z, Gáspár R, Mátyus L, Damjanovich S (2004a) Kv1.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proc Natl Acad Sci USA 101:1285–1290

    CrossRef  PubMed  Google Scholar 

  • Panyi G, Vámosi G, Bodnár A, Gáspár R, Damjanovich S (2004b) Looking through ion channels: recharged concepts in T-cell signaling. Trends Immunol 25:565–569

    CrossRef  PubMed  Google Scholar 

  • Panyi G, Varga Z, Gáspár R (2004c) Ion channels and lymphocyte activation. Immunol Lett 92:55–66

    CrossRef  PubMed  Google Scholar 

  • Pickl W, Holter W, Stöckl J, Majdic O, Knapp W (1996) Expression of LA45 reactive β2-microglobulin free HLA class I α-chains on activated T cells is regulated by internalization, constitutive and protein kinase C inducible release. Tissue Antigens 48:15–21

    PubMed  Google Scholar 

  • Pramanik A (2004) Ligand-receptor interactions in live cells by fluorescence correlation spectroscopy. Curr Pharm Biotechnol 5:205–212

    CrossRef  PubMed  Google Scholar 

  • Ramalingam TS, Chakrabarti A, Edidin M (1997) Interaction of class I human leukocyte antigen (HLA-I) molecules with insulin receptors and its effect on the insulin-signaling cascade. Mol Biol Cell 8:2463–2474

    PubMed  Google Scholar 

  • Reiland J, Edidin M (1993) Chemical cross-linking detects association of insulin receptors with four different class I human leukocyte antigen molecules on cell surfaces. Diabetes 42:619–625

    PubMed  Google Scholar 

  • Rigler R, Elson ES (2001) Fluorescence correlation spectroscopy. Theory and applications. Springer, Berlin Heidelberg, New York, 487 pp

    Google Scholar 

  • Rippe K (2000) Simultaneous binding of two DNA duplexes to the NtrC-enhancer complex studied by two-color fluorescence cross-correlation spectroscopy. Biochemistry 39:2131–2139

    CrossRef  PubMed  Google Scholar 

  • Ritchie K, Kusumi A (2004) Role of the membrane skeleton in creation of microdomains. Subcell Biochem 37:233–245

    PubMed  Google Scholar 

  • Roozemond RC, Bonavida B (1985) Effect of altered membrane fluidity on NK cell-mediated cytotoxicity. I. Selective inhibition of the recognition or post recognition events in the cytolytic pathway of NK cells. J Immunol 134:2209–2214

    PubMed  Google Scholar 

  • Schwille P, Meyer-Almes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72:1878–1886

    PubMed  Google Scholar 

  • Sebestyén Z, Nagy P, Horvath G, Vámosi G, Debets R, Gratama JW, Alexander DR, Szöllősi J (2002) Long wavelength fluorophores and cell-by-cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual-laser benchtop flow cytometer. Cytometry 48:124–135

    CrossRef  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    CrossRef  PubMed  Google Scholar 

  • Simons K, Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295

    CrossRef  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    PubMed  Google Scholar 

  • Smith P, Morrison I, Wilson K, Fernandez N, Cherry R (1999) Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking. Biophys J 76:3331–3344

    PubMed  Google Scholar 

  • Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Nat Acad Sci USA 58:719–726

    PubMed  Google Scholar 

  • Swaminathan R, Bicknese S, Periasamy N, Verkman AS (1996) Cytoplasmic viscosity near the cell plasma membrane: translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery. Biophys J 71:1140–1151

    PubMed  Google Scholar 

  • Szekeres-Bartho J, Nemeth A, Varga P, Csernus V, Koszegi T, Paal M (1989) Membrane fluidity of trophoblast cells and susceptibility to natural cytotoxicity. Am J Reprod Immunol 19:92–98

    PubMed  Google Scholar 

  • Szentesi G, Horvath G, Bori I, Vámosi G, Szöllősi J, Gáspár R, Damjanovich S, Jenei A, Mátyus L (2004) Computer program for determining fluorescence resonance energy transfer efficiency from flow cytometric data on a cell-by-cell basis. Comput Methods Programs Biomed 75:201–211

    CrossRef  PubMed  Google Scholar 

  • Szöllősi J, Trón L, Damjanovich S, Helliwell SH, Arndt-Jovin D, Jovin TM (1984) Fluorescence energy transfer measurements on cell surfaces: a critical comparison of steady-state fluorimetric and flow cytometric methods. Cytometry 5:210–216

    CrossRef  PubMed  Google Scholar 

  • Szöllősi J, Damjanovich S, Balazs M, Nagy P, Trón L, Fulwyler MJ, Brodsky FM (1989) Physical association between MHC class I and class II molecules detected on the cell surface by flow cytometric energy transfer. J Immunol 143:208–213

    PubMed  Google Scholar 

  • Szöllõsi J, Horejsi V, Bene L, Angelisova P, Damjanovich S (1996) Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. J Immunol 157:2939–2946

    PubMed  Google Scholar 

  • Szöllősi J, Damjanovich S, Mátyus L (1998) Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research. Cytometry 34:159–179

    CrossRef  PubMed  Google Scholar 

  • Tang Q, Edidin M (2001) Vesicle trafficking and cell surface membrane patchiness. Biophys J 81:196–203

    PubMed  Google Scholar 

  • Tocanne JF, Cezanne L, Lopez A, Piknova B, Schram V, Tournier JF, Welby M (1994) Lipid domains and lipid/protein interactions in biological membranes. Chem Phys Lipids 73:139–158

    CrossRef  PubMed  Google Scholar 

  • Triantafilou K, Triantafilou M, Wilson KM, Fernandez N (2000) Human major histocompatibility molecules have the intrinsic ability to form homotypic associations. Hum Immunol 61:585–598

    CrossRef  PubMed  Google Scholar 

  • Trón L, Szöllősi J, Damjanovich S, Helliwell SH, Arndt-Jovin DJ, Jovin TM (1984) Flow cytometric measurements of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell by cell basis. Biophys J 45:939–946

    PubMed  Google Scholar 

  • Vámosi G, Bodnár A, Vereb G, Jenei A, Goldman CK, Langowski J, Tóth K, Mátyus L, Szöllősi J, Waldmann TA, Damjanovich S (2004) IL-2 and IL-15 receptor alpha-subunits are coexpressed in a supramolecular receptor cluster in lipid rafts of T cells. Proc Natl Acad Sci USA 101:11082–11087

    CrossRef  PubMed  Google Scholar 

  • Vereb G, Mátyus L, Bene L, Panyi G, Bacsó Z, Balázs M, Matkó J, Szöllősi J, Gáspár R Jr, Damjanovich S (1995) Plasmamembrane bound macromolecules are dynamically aggregated to form nonrandom codistribution patterns of selected functional elements. Do pattern recognition processes govern antigen presentation and intercellular interactions? J Mol Recogn 8:237–246

    CrossRef  Google Scholar 

  • Vereb G, Matkó J, Vámosi G, Ibrahim SM, Magyar E, Varga S, Szöllősi J, Jenei A, Gáspár RJ, Waldmann TA, Damjanovich S (2000) Cholesterol-dependent clustering of IL-2Ralpha and its colocalization with HLA and CD48 on T lymphoma cells suggest their functional association with lipid rafts. Proc Natl Acad Sci USA 97:6013–6018

    CrossRef  PubMed  Google Scholar 

  • Vereb G, Szöllősi J, Matkó J, Nagy P, Farkas T, Vigh L, Mátyus L, Waldmann TA, Damjanovich S (2003) Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci USA 100:8053–8058

    CrossRef  PubMed  Google Scholar 

  • Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298:677–689

    CrossRef  PubMed  Google Scholar 

  • Wachsmuth M, Weidemann T, Muller G, Hoffmann-Rohrer UW, Knoch TA, Waldeck W, Langowski J (2003) Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching. Biophys J 84:3353–3363

    PubMed  Google Scholar 

  • Weidemann T, Wachsmuth M, Tewes M, Rippe K, Langowski J (2002) Analysis of ligand binding by two-colour fluorescence cross-correlation spectroscopy. Single Molecules 3:49–61

    CrossRef  Google Scholar 

  • Welti R, Glaser M (1994) Lipid domains in model and biological membranes. Chem Phys Lipids 73:121–137

    CrossRef  PubMed  Google Scholar 

  • Widengren J, Mets Ü, Rigler R (1995) Fluorescence correlation spectroscopy of triplet state in solution: a theoretical and experimental study. J Phys Chem 99:13368–13379

    CrossRef  Google Scholar 

  • Yang XL, Xiong WC, Mei L (2004) Lipid rafts in neuregulin signaling at synapses. Life Sci 75:2495–2504

    CrossRef  PubMed  Google Scholar 

  • Zidovetzki R, Yarden Y, Schlessinger J, Jovin TM (1981) Rotational diffusion of epidermal growth factor complexed to cell surface receptors reflects rapid microaggregation and endocytosis of occupied receptors. Proc Natl Acad Sci USA 78:6981–6985

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bodnár, A., Vámosi, G., Tóth, K., Jenei, A., Mátyus, L., Damjanovich, S. (2005). Non-Random Patterns of Membrane Proteins and Their Roles in Transmembrane Signaling. In: Damjanovich, S. (eds) Biophysical Aspects of Transmembrane Signaling. Springer Series in Biophysics, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26511-2_3

Download citation