Non-Random Patterns of Membrane Proteins and Their Roles in Transmembrane Signaling

  • Andrea Bodnár
  • György Vámosi
  • Katalin Tóth
  • Attila Jenei
  • László Mátyus
  • Sándor Damjanovich
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 8)


Lipid Raft Fluorescence Resonance Energy Transfer Uveal Melanoma Fluorescence Correlation Spectroscopy Immunological Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson HA, Hiltbold EM, Roche PA (2000) Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol 1:156–162CrossRefPubMedGoogle Scholar
  2. Bacia K, Schwille P (2003) A dynamic view of cellular processes by in vivo fluorescence auto-and cross-correlation spectroscopy. Methods 29:74–85CrossRefPubMedGoogle Scholar
  3. Bacia K, Majoul IV, Schwille P (2002) Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis. Biophys J 83:1184–1193PubMedGoogle Scholar
  4. Bacsó Z, Bene L, Damjanovich L, Damjanovich S (2002) INF-gamma rearranges membrane topography of MHC-I and ICAM-1 in colon carcinoma cells. Biochem Biophys Res Commun 290:635–640CrossRefPubMedGoogle Scholar
  5. Bene L, Balazs M, Matkó J, Most J, Dierich MP, Szöllősi J, Damjanovich S (1994) Lateral organization of the ICAM-1 molecule at the surface of human lymphoblasts: a possible model for its co-distribution with the IL-2 receptor, class I and class II HLA molecules. Eur J Immunol 24:2115–2123PubMedGoogle Scholar
  6. Bene L, Bodnár A, Damjanovich S, Vámosi G, Bacsó Z, Aradi J, Berta A, Damjanovich J (2004) Membrane topography of HLA I, HLA II, and ICAM-1 is affected by IFN-gamma in lipid rafts of uveal melanomas. Biochem Biophys Res Commun 322:678–683CrossRefPubMedGoogle Scholar
  7. Bodnár A, Jenei A, Bene L, Damjanovich S, Matkó J (1996) Modification of membrane cholesterol level affects expression and clustering of class I HLA molecules at the surface of JY human lymphoblasts. Immunol Lett 54:221–226CrossRefPubMedGoogle Scholar
  8. Bodnár A, Bacsó Z, Jenei A, Jovin TM, Edidin M, Damjanovich S, Matkó J (2003) Class I HLA oligomerization at the surface of B cells is controlled by exogenous beta(2)-microglobulin: implications in activation of cytotoxic T lymphocytes. Int Immunol 15:331–339CrossRefPubMedGoogle Scholar
  9. Boniface J, Rabinowitz J, Wülfing C, Hampl J, Reich Z, Altman J, Kantor R, Beeson C, McConnell H, Davis M (1998) Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands. Immunity 9:459–466CrossRefPubMedGoogle Scholar
  10. Bromley SK, Burack WR, Johnson KG, Somersalo K, Sims TN, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (2001) The immunological synapse. Annu Rev Immunol 19:375–396CrossRefPubMedGoogle Scholar
  11. Chakrabarti A, Matkó J, Rahman NA, Barisas BG, Edidin M (1992) Self-association of class I major histocompatibility complex molecules in liposome and cell surface membranes. Biochemistry 31:7182–7189CrossRefPubMedGoogle Scholar
  12. Clegg RM (1996) Fluorescence resonance energy transfer (FRET). In: Wang XF, Herman B (eds) Fluorescence imaging spectroscopy and microscopy. Wiley, New York, pp 179–252Google Scholar
  13. Cochran J, Cameron T, Stern L (2000) The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12:241–250CrossRefPubMedGoogle Scholar
  14. Damjanovich S, Bahr W, Jovin TM (1977) The functional and fluorescence properties of Escherichia coli RNA polymerase reacted with fluorescamine. Eur J Biochem 72:559–569CrossRefPubMedGoogle Scholar
  15. Damjanovich S, Somogyi B, Trón L (1981) Macromolecular dynamics and information transfer. Adv Physiol Sci 30:9–15Google Scholar
  16. Damjanovich S, Trón L, Szöllősi J, Zidovetzki R, Vaz WL, Regateiro F, Arndt-Jovin DJ, Jovin TM (1983) Distribution and mobility of murine histocompatibility H-2Kk antigen in the cytoplasmic membrane. Proc Natl Acad Sci USA 80:5985–5989PubMedGoogle Scholar
  17. Damjanovich S, Mátyus L, Balazs M, Gáspár R, Krasznai Z, Pieri C, Szöllősi J, Trón L (1992) Dynamic physical interactions of plasma membrane molecules generate cell surface patterns and regulate cell activation processes. Immunobiology 185:337–349PubMedGoogle Scholar
  18. Damjanovich S, Vereb G, Schaper A, Jenei A, Matkó J, Starink JP, Fox GQ, Arndt-Jovin DJ, Jovin TM (1995) Structural hierarchy in the clustering of HLA class I molecules in the plasma membrane of human lymphoblastoid cells. Proc Natl Acad Sci USA 92:1122–1126PubMedGoogle Scholar
  19. Damjanovich S, Bene L, Matkó J, Alileche A, Goldman CK, Sharrow S, Waldmann TA (1997a) Preassembly of interleukin 2 (IL-2) receptor subunits on resting Kit 225 K6 T cells and their modulation by IL-2, IL-7, and IL-15: a fluorescence resonance energy transfer study. Proc Natl Acad Sci USA 94:13134–13139CrossRefPubMedGoogle Scholar
  20. Damjanovich S, Gáspár RJ, Pieri C (1997b) Dynamic receptor superstructures at the plasma membrane. Q Rev Biophys 30:67–106CrossRefPubMedGoogle Scholar
  21. Damjanovich S, Matkó J, Mátyus L, Szabo G Jr, Szöllősi J, Pieri JC, Farkas T, Gáspár R Jr (1998) Supramolecular receptor structures in the plasma membrane of lymphocytes revealed by flow cytometric energy transfer, scanning force-and transmission electron-microscopic analyses. Cytometry 33:225–233CrossRefPubMedGoogle Scholar
  22. Damjanovich S, Bene L, Matkó J, Mátyus L, Krasznai Z, Szabo G, Pieri C, Gáspár RJ, Szöllősi J (1999) Two-dimensional receptor patterns in the plasma membrane of cells. A critical evaluation of their identification, origin and information content. Biophys Chem 82:99–108CrossRefGoogle Scholar
  23. Damjanovich S, Mátyus L, Damjanovich L, Bene L, Jenei A, Matkó J, Gáspár R, Szöllősi J (2002) Does mosaicism of the plasma membrane at molecular and higher hierarchical levels in human lymphocytes carry information on the immediate history of cells? Immunol Lett 82:93–99CrossRefPubMedGoogle Scholar
  24. Daniels MA, Jameson SC (2000) Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J Exp Med 191:335–345CrossRefPubMedGoogle Scholar
  25. Demaria S, Schwab R, Gottesman S, Bushkin Y (1994) Soluble β2-microglobulin-free class I heavy chains are released from the surface of activated and leukemia cells by a metalloprotease. J Biol Chem 269:6689–6694PubMedGoogle Scholar
  26. Edidin M (1993) Patches and fences: probing for plasma membrane domains. J Cell Sci Suppl 17:165–169PubMedGoogle Scholar
  27. Edidin M (1997) Lipid microdomains in cell surface membranes. Curr Opin Struct Biol 7:528–532CrossRefPubMedGoogle Scholar
  28. Edidin M (2001) Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell Biol 11:492–496CrossRefPubMedGoogle Scholar
  29. Edidin M (2003) The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32:257–283CrossRefPubMedGoogle Scholar
  30. Edidin M, Reiland J (1990) Dynamic measurements of the associations between class I MHC antigens and insulin receptors. Mol Immunol 27:1313–1317CrossRefPubMedGoogle Scholar
  31. Eicher DM, Damjanovich S, Waldmann TA (2002) Oligomerization of IL-2Ralpha. Cytokine 17:82–90CrossRefPubMedGoogle Scholar
  32. Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. Conceptual basis and theory. Biopolymers 13:1–27CrossRefGoogle Scholar
  33. Elson EL, Schlessinger J, Koppel DE, Axelrod D, Webb WW (1976) Measurement of lateral transport on cell surfaces. Prog Clin Biol Res 9:137–147PubMedGoogle Scholar
  34. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 2:55–75Google Scholar
  35. Friedl P, Storim J (2004) Diversity in immune-cell interactions: states and functions of the immunological synapse. Trends Cell Biol 14:557–567CrossRefPubMedGoogle Scholar
  36. Frye LD, Edidin M (1970) The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci 7:319–335PubMedGoogle Scholar
  37. Gheber LA, Edidin M (1999) A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicle traffic. Biophys J 77:3163–3175PubMedGoogle Scholar
  38. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227CrossRefPubMedGoogle Scholar
  39. Hajdu P, Varga Z, Pieri C, Panyi G, Gáspár R Jr (2003) Cholesterol modifies the gating of Kv1.3 in human T lymphocytes. Pflugers Arch 445:674–682PubMedGoogle Scholar
  40. Harel-Bellan A, Krief P, Rimsky L, Farrar WL, Mishal Z (1990) Flow cytometry resonance energy transfer suggests an association between low-affinity interleukin 2 binding sites and HLA class I molecules. Biochem J 268:35–40PubMedGoogle Scholar
  41. Hoessli DC, Ilangumaran S, Soltermann A, Robinson PJ, Borisch B, Nasir UD (2000) Signaling through sphingolipid microdomains of the plasma membrane: the concept of signaling platform. Glycoconj J 17:191–197CrossRefPubMedGoogle Scholar
  42. Horejsi V (2002) Membrane rafts in immunoreceptor signaling: new doubts, new proofs? Trends Immunol 23:562–564CrossRefPubMedGoogle Scholar
  43. Horejsi V (2003) The roles of membrane microdomains (rafts) in T cell activation. Immunol Rev 191:148–164CrossRefPubMedGoogle Scholar
  44. Jenei A, Varga S, Bene L, Mátyus L, Bodnár A, Bacsó Z, Pieri C, Gáspár RJ, Farkas T, Damjanovich S (1997) HLA class I and II antigens are partially co-clustered in the plasma membrane of human lymphoblastoid cells. Proc Natl Acad Sci USA 94:7269–7274CrossRefPubMedGoogle Scholar
  45. Klausner RD, Lippincott-Schwartz J, Bonifacino JS (1990) The T cell antigen receptor: insights into organelle biology. Annu Rev Cell Biol 6:403–431CrossRefPubMedGoogle Scholar
  46. Kusumi A, Sako Y (1996) Cell surface organization by the membrane skeleton. Curr Opin Cell Biol 8:566–574CrossRefPubMedGoogle Scholar
  47. Lemmon MA, Engelman DM (1994) Specificity and promiscuity in membrane helix interactions. Q Rev Biophys 27:157–218PubMedGoogle Scholar
  48. Liegler T, Szöllősi J, Hyun W, Goodenow RS (1991) Proximity measurements between H-2 antigens and the insulin receptor by fluorescence energy transfer: evidence that a close association does not influence insulin binding. Proc Natl Acad Sci USA 88:6755–6759PubMedGoogle Scholar
  49. Lucero HA, Robbins PW (2004) Lipid rafts-protein association and the regulation of protein activity. Arch Biochem Biophys 426:208–224CrossRefPubMedGoogle Scholar
  50. Matkó J, Edidin M (1997) Energy transfer methods for detecting molecular clusters on cell surfaces. Methods Enzymol 278:444–462PubMedGoogle Scholar
  51. Matkó J, Szöllősi J (2002) Landing of immune receptors and signal proteins on lipid rafts: a safe way to be spatio-temporally coordinated? Immunol Lett 82:3–15CrossRefPubMedGoogle Scholar
  52. Matkó J, Bushkin Y, Wei T, Edidin M (1994) Clustering of class I HLA molecules on the surfaces of activated and transformed human cells. J Immunol 152:3353–3360PubMedGoogle Scholar
  53. Matkó J, Bodnár A, Vereb G, Bene L, Vámosi G, Szentesi G, Szöllősi J, Gáspár R, Horejsi V, Waldmann TA, Damjanovich S (2002) GPI-microdomains (membrane rafts) and signaling of the multi-chain interleukin-2 receptor in human lymphoma/leukemia T cell lines. Eur J Biochem 269:1199–1208CrossRefPubMedGoogle Scholar
  54. Mátyus L, Bene L, Heiligen H, Rausch J, Damjanovich S (1995) Distinct association of transferrin receptor with HLA class I molecules on HUT-102B and JY cells. Immunol Lett 44:203–208CrossRefPubMedGoogle Scholar
  55. Monks C, Freiberg B, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82–86CrossRefPubMedGoogle Scholar
  56. Nagy P, Mátyus L, Jenei A, Panyi G, Varga S, Matkó J, Szöllősi J, Gáspár R, Jovin TM, Damjanovich S (2001) Cell fusion experiments reveal distinctly different association characteristics of cell-surface receptors. J Cell Sci 114:4063–4071PubMedGoogle Scholar
  57. Panyi G, Deutsch C (1996) Assembly and suppression of endogenous Kv1.3 channels in human T cells. J Gen Physiol 107:409–420CrossRefPubMedGoogle Scholar
  58. Panyi G, Sheng Z-F, Tu L-W, Deutsch C (1995) C-type inactivation of a voltage-gated K+ channel occurs by a cooperative mechanism. Biophys J 69:896–904PubMedGoogle Scholar
  59. Panyi G, Bagdány M, Bodnár A, Vámosi G, Szentesi G, Jenei A, Mátyus L, Varga S, Waldmann TA, Gáspár R, Damjanovich S (2003) Colocalization and nonrandom distribution of Kv1.3 potassium channels and CD3 molecules in the plasma membrane of human T lymphocytes. Proc Natl Acad Sci USA 100:2592–2597CrossRefPubMedGoogle Scholar
  60. Panyi G, Vámosi G, Bacsó Z, Bagdány M, Bodnár A, Varga Z, Gáspár R, Mátyus L, Damjanovich S (2004a) Kv1.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proc Natl Acad Sci USA 101:1285–1290CrossRefPubMedGoogle Scholar
  61. Panyi G, Vámosi G, Bodnár A, Gáspár R, Damjanovich S (2004b) Looking through ion channels: recharged concepts in T-cell signaling. Trends Immunol 25:565–569CrossRefPubMedGoogle Scholar
  62. Panyi G, Varga Z, Gáspár R (2004c) Ion channels and lymphocyte activation. Immunol Lett 92:55–66CrossRefPubMedGoogle Scholar
  63. Pickl W, Holter W, Stöckl J, Majdic O, Knapp W (1996) Expression of LA45 reactive β2-microglobulin free HLA class I α-chains on activated T cells is regulated by internalization, constitutive and protein kinase C inducible release. Tissue Antigens 48:15–21PubMedGoogle Scholar
  64. Pramanik A (2004) Ligand-receptor interactions in live cells by fluorescence correlation spectroscopy. Curr Pharm Biotechnol 5:205–212CrossRefPubMedGoogle Scholar
  65. Ramalingam TS, Chakrabarti A, Edidin M (1997) Interaction of class I human leukocyte antigen (HLA-I) molecules with insulin receptors and its effect on the insulin-signaling cascade. Mol Biol Cell 8:2463–2474PubMedGoogle Scholar
  66. Reiland J, Edidin M (1993) Chemical cross-linking detects association of insulin receptors with four different class I human leukocyte antigen molecules on cell surfaces. Diabetes 42:619–625PubMedGoogle Scholar
  67. Rigler R, Elson ES (2001) Fluorescence correlation spectroscopy. Theory and applications. Springer, Berlin Heidelberg, New York, 487 ppGoogle Scholar
  68. Rippe K (2000) Simultaneous binding of two DNA duplexes to the NtrC-enhancer complex studied by two-color fluorescence cross-correlation spectroscopy. Biochemistry 39:2131–2139CrossRefPubMedGoogle Scholar
  69. Ritchie K, Kusumi A (2004) Role of the membrane skeleton in creation of microdomains. Subcell Biochem 37:233–245PubMedGoogle Scholar
  70. Roozemond RC, Bonavida B (1985) Effect of altered membrane fluidity on NK cell-mediated cytotoxicity. I. Selective inhibition of the recognition or post recognition events in the cytolytic pathway of NK cells. J Immunol 134:2209–2214PubMedGoogle Scholar
  71. Schwille P, Meyer-Almes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72:1878–1886PubMedGoogle Scholar
  72. Sebestyén Z, Nagy P, Horvath G, Vámosi G, Debets R, Gratama JW, Alexander DR, Szöllősi J (2002) Long wavelength fluorophores and cell-by-cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual-laser benchtop flow cytometer. Cytometry 48:124–135CrossRefPubMedGoogle Scholar
  73. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572CrossRefPubMedGoogle Scholar
  74. Simons K, Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295CrossRefPubMedGoogle Scholar
  75. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731PubMedGoogle Scholar
  76. Smith P, Morrison I, Wilson K, Fernandez N, Cherry R (1999) Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking. Biophys J 76:3331–3344PubMedGoogle Scholar
  77. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Nat Acad Sci USA 58:719–726PubMedGoogle Scholar
  78. Swaminathan R, Bicknese S, Periasamy N, Verkman AS (1996) Cytoplasmic viscosity near the cell plasma membrane: translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery. Biophys J 71:1140–1151PubMedGoogle Scholar
  79. Szekeres-Bartho J, Nemeth A, Varga P, Csernus V, Koszegi T, Paal M (1989) Membrane fluidity of trophoblast cells and susceptibility to natural cytotoxicity. Am J Reprod Immunol 19:92–98PubMedGoogle Scholar
  80. Szentesi G, Horvath G, Bori I, Vámosi G, Szöllősi J, Gáspár R, Damjanovich S, Jenei A, Mátyus L (2004) Computer program for determining fluorescence resonance energy transfer efficiency from flow cytometric data on a cell-by-cell basis. Comput Methods Programs Biomed 75:201–211CrossRefPubMedGoogle Scholar
  81. Szöllősi J, Trón L, Damjanovich S, Helliwell SH, Arndt-Jovin D, Jovin TM (1984) Fluorescence energy transfer measurements on cell surfaces: a critical comparison of steady-state fluorimetric and flow cytometric methods. Cytometry 5:210–216CrossRefPubMedGoogle Scholar
  82. Szöllősi J, Damjanovich S, Balazs M, Nagy P, Trón L, Fulwyler MJ, Brodsky FM (1989) Physical association between MHC class I and class II molecules detected on the cell surface by flow cytometric energy transfer. J Immunol 143:208–213PubMedGoogle Scholar
  83. Szöllõsi J, Horejsi V, Bene L, Angelisova P, Damjanovich S (1996) Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. J Immunol 157:2939–2946PubMedGoogle Scholar
  84. Szöllősi J, Damjanovich S, Mátyus L (1998) Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research. Cytometry 34:159–179CrossRefPubMedGoogle Scholar
  85. Tang Q, Edidin M (2001) Vesicle trafficking and cell surface membrane patchiness. Biophys J 81:196–203PubMedGoogle Scholar
  86. Tocanne JF, Cezanne L, Lopez A, Piknova B, Schram V, Tournier JF, Welby M (1994) Lipid domains and lipid/protein interactions in biological membranes. Chem Phys Lipids 73:139–158CrossRefPubMedGoogle Scholar
  87. Triantafilou K, Triantafilou M, Wilson KM, Fernandez N (2000) Human major histocompatibility molecules have the intrinsic ability to form homotypic associations. Hum Immunol 61:585–598CrossRefPubMedGoogle Scholar
  88. Trón L, Szöllősi J, Damjanovich S, Helliwell SH, Arndt-Jovin DJ, Jovin TM (1984) Flow cytometric measurements of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell by cell basis. Biophys J 45:939–946PubMedGoogle Scholar
  89. Vámosi G, Bodnár A, Vereb G, Jenei A, Goldman CK, Langowski J, Tóth K, Mátyus L, Szöllősi J, Waldmann TA, Damjanovich S (2004) IL-2 and IL-15 receptor alpha-subunits are coexpressed in a supramolecular receptor cluster in lipid rafts of T cells. Proc Natl Acad Sci USA 101:11082–11087CrossRefPubMedGoogle Scholar
  90. Vereb G, Mátyus L, Bene L, Panyi G, Bacsó Z, Balázs M, Matkó J, Szöllősi J, Gáspár R Jr, Damjanovich S (1995) Plasmamembrane bound macromolecules are dynamically aggregated to form nonrandom codistribution patterns of selected functional elements. Do pattern recognition processes govern antigen presentation and intercellular interactions? J Mol Recogn 8:237–246CrossRefGoogle Scholar
  91. Vereb G, Matkó J, Vámosi G, Ibrahim SM, Magyar E, Varga S, Szöllősi J, Jenei A, Gáspár RJ, Waldmann TA, Damjanovich S (2000) Cholesterol-dependent clustering of IL-2Ralpha and its colocalization with HLA and CD48 on T lymphoma cells suggest their functional association with lipid rafts. Proc Natl Acad Sci USA 97:6013–6018CrossRefPubMedGoogle Scholar
  92. Vereb G, Szöllősi J, Matkó J, Nagy P, Farkas T, Vigh L, Mátyus L, Waldmann TA, Damjanovich S (2003) Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci USA 100:8053–8058CrossRefPubMedGoogle Scholar
  93. Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298:677–689CrossRefPubMedGoogle Scholar
  94. Wachsmuth M, Weidemann T, Muller G, Hoffmann-Rohrer UW, Knoch TA, Waldeck W, Langowski J (2003) Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching. Biophys J 84:3353–3363PubMedGoogle Scholar
  95. Weidemann T, Wachsmuth M, Tewes M, Rippe K, Langowski J (2002) Analysis of ligand binding by two-colour fluorescence cross-correlation spectroscopy. Single Molecules 3:49–61CrossRefGoogle Scholar
  96. Welti R, Glaser M (1994) Lipid domains in model and biological membranes. Chem Phys Lipids 73:121–137CrossRefPubMedGoogle Scholar
  97. Widengren J, Mets Ü, Rigler R (1995) Fluorescence correlation spectroscopy of triplet state in solution: a theoretical and experimental study. J Phys Chem 99:13368–13379CrossRefGoogle Scholar
  98. Yang XL, Xiong WC, Mei L (2004) Lipid rafts in neuregulin signaling at synapses. Life Sci 75:2495–2504CrossRefPubMedGoogle Scholar
  99. Zidovetzki R, Yarden Y, Schlessinger J, Jovin TM (1981) Rotational diffusion of epidermal growth factor complexed to cell surface receptors reflects rapid microaggregation and endocytosis of occupied receptors. Proc Natl Acad Sci USA 78:6981–6985PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andrea Bodnár
  • György Vámosi
  • Katalin Tóth
  • Attila Jenei
  • László Mátyus
  • Sándor Damjanovich

There are no affiliations available

Personalised recommendations