Advertisement

Novel Single Cell Fluorescence Approaches in the Investigation of Signaling at the Cellular Level

  • Péter Nagy
  • György Vereb
  • Janine N. Post
  • Elza Friedländer
  • János Szölloősi
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 8)

Keywords

Green Fluorescent Protein Lipid Raft Fluorescence Resonance Energy Transfer Fluorescence Anisotropy Fluorescent Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, Llopis J, Tsien RY (2002) New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124:6063–6076CrossRefPubMedGoogle Scholar
  2. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239CrossRefGoogle Scholar
  3. Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99:12651–12656CrossRefPubMedGoogle Scholar
  4. Balla T, Varnai P (2002) Visualizing cellular phosphoinositide pools with GFP-fused protein-modules. Sci Signal Transduction Knowledge Environment (STKE), 26 March(125):PL3Google Scholar
  5. Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, Sklarin NT, Seidman AD, Hudis CA, Moore J, Rosen PP, Twaddell T, Henderson IC, Norton L (1996) Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 14:737–744PubMedGoogle Scholar
  6. Bastiaens PI, Squire A (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9:48–52CrossRefPubMedGoogle Scholar
  7. Bastiaens PI, Majoul IV, Verveer PJ, Soling HD, Jovin TM (1996) Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J 15:4246–4253PubMedGoogle Scholar
  8. Batard P, Szollosi J, Luescher I, Cerottini JC, MacDonald R, Romero P (2002) Use of phycoerythrin and allophycocyanin for fluorescence resonance energy transfer analyzed by flow cytometry: advantages and limitations. Cytometry 48:97–105CrossRefPubMedGoogle Scholar
  9. Berney C, Danuser G (2003) FRET or no FRET: a quantitative comparison. Biophys J 84:3992–4010PubMedGoogle Scholar
  10. Betzig E (1995) Proposed method for molecular optical imaging. Opt Lett 20:237–239Google Scholar
  11. Betzig E, Chichester RJ (1993) Single molecules observed by near-field scanning optical microscopy. Science 262:1422–1427Google Scholar
  12. Blackman SM, Piston DW, Beth AH (1998) Oligomeric state of human erythrocyte band 3 measured by fluorescence resonance energy homotransfer. Biophys J 75:1117–1130PubMedGoogle Scholar
  13. Brock R, Jovin TM (2001) Heterogeneity of signal transduction at the subcellular level: microsphere-based focal EGF receptor activation and stimulation of Shc translocation. J Cell Sci 114:2437–2447PubMedGoogle Scholar
  14. Brock R, Jovin TM (2003) Quantitative image analysis of cellular protein translocation induced by magnetic microspheres: application to the EGF receptor. Cytometry 52A:1–11CrossRefGoogle Scholar
  15. Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain RK (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7:864–868CrossRefPubMedGoogle Scholar
  16. Bruchez M Jr., Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRefPubMedGoogle Scholar
  17. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99:7877–7882CrossRefPubMedGoogle Scholar
  18. Cardarelli PM, Quinn M, Buckman D, Fang Y, Colcher D, King DJ, Bebbington C, Yarranton G (2002) Binding to CD20 by anti-B1 antibody or F(ab’)2 is sufficient for induction of apoptosis in B-cell lines. Cancer Immunol Immunother 51:15–24CrossRefPubMedGoogle Scholar
  19. Chalfie M (1995) Green fluorescent protein. Photochem Photobiol 62:651–656PubMedGoogle Scholar
  20. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018CrossRefPubMedGoogle Scholar
  21. Chudakov DM, Belousov VV, Zaraisky AG, Novoselov VV, Staroverov DB, Zorov DB, Lukyanov S, Lukyanov KA (2003) Kindling fluorescent proteins for precise in vivo photolabeling. Nat Biotechnol 21:191–194CrossRefPubMedGoogle Scholar
  22. Clayton AH, Hanley QS, Arndt-Jovin DJ, Subramaniam V, Jovin TM (2002) Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM). Biophys J 83:1631–1649PubMedGoogle Scholar
  23. Clegg RM (1995) Fluorescence resonance energy transfer. Curr Opin Biotechnol 6:103–110CrossRefPubMedGoogle Scholar
  24. Clontech (2001) Living colors. User manual. www.bdbiosciences.com/clontech/techinfo/manualsGoogle Scholar
  25. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445CrossRefPubMedGoogle Scholar
  26. Dale RE, Eisinger J, Blumberg WE (1979) The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J 26:161–193PubMedGoogle Scholar
  27. Damjanovich S, Vereb G, Schaper A, Jenei A, Matkó J, Starink JP, Fox GQ, Arndt Jovin DJ, Jovin TM (1995) Structural hierarchy in the clustering of HLA class I molecules in the plasma membrane of human lymphoblastoid cells. Proc Natl Acad Sci USA 92:1122–1126PubMedGoogle Scholar
  28. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76PubMedGoogle Scholar
  29. Desmyter A, Decanniere K, Muyldermans S, Wyns L (2001) Antigen specificity and high affinity binding provided by one single loop of a camel single-domain antibody. J Biol Chem 276:26285–26290CrossRefPubMedGoogle Scholar
  30. Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850CrossRefGoogle Scholar
  31. Dornan S, Sebestyén Z, Gamble J, Nagy P, Bodnár A, Alldridge L, Doe S, Holmes N, Goff LK, Beverley P, Szöllősi J, Alexander DR (2002) Differential association of CD45 isoforms with CD4 and CD8 regulates the actions of specific pools of p56lck tyrosine kinase in T cell antigen receptor signal transduction. J Biol Chem 277:1912–1918CrossRefPubMedGoogle Scholar
  32. Dyba M, Hell SW (2002) Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution. Phys Rev Lett 88:163901–163901-4CrossRefPubMedGoogle Scholar
  33. Dyba M, Jakobs S, Hell SW (2003) Immunofluorescence stimulated emission depletion microscopy. Nat Biotechnol 21:1303–1304CrossRefPubMedGoogle Scholar
  34. Edidin M (2001) Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell Biol 11:492–496CrossRefPubMedGoogle Scholar
  35. Egner A, Jakobs S, Hell SW (2002) Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc Natl Acad Sci USA 99:3370–3375CrossRefPubMedGoogle Scholar
  36. Eisinger J (1976) Energy transfer and dynamic structure. Q Rev Biophys 9:21–33PubMedGoogle Scholar
  37. Elangovan M, Wallrabe H, Chen Y, Day RN, Barroso M, Periasamy A (2003) Characterization of one-and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29:58–73CrossRefPubMedGoogle Scholar
  38. Förster T (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 6:166–175CrossRefGoogle Scholar
  39. Gadella TW Jr., Jovin TM (1995) Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J Cell Biol 129:1543–1558CrossRefPubMedGoogle Scholar
  40. Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY, Ellisman MH (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507CrossRefPubMedGoogle Scholar
  41. Gautier I, Tramier M, Durieux C, Coppey J, Pansu RB, Nicolas JC, Kemnitz K, Coppey-Moisan M (2001) Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins. Biophys J 80:3000–3008PubMedGoogle Scholar
  42. Giordano L, Jovin TM, Irie M, Jares-Erijman EA (2002) Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J Am Chem Soc 124:7481–7489CrossRefPubMedGoogle Scholar
  43. Gordon GW, Berry G, Liang XH, Levine B, Herman B (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74:2702–2713PubMedGoogle Scholar
  44. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188–29194CrossRefPubMedGoogle Scholar
  45. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272CrossRefPubMedGoogle Scholar
  46. Griffin BA, Adams SR, Jones J, Tsien RY (2000) Fluorescent labeling of recombinant proteins in living cells with FlAsH. Methods Enzymol 327:565–578PubMedGoogle Scholar
  47. Gustafsson MGL, Agard DA, Sedat JW (1999) I5 M: 3D widefield light microscopy with better than 100 nm axial resolution. J Microsc 195:10–16CrossRefPubMedGoogle Scholar
  48. Haj FG, Verveer PJ, Squire A, Neel BG, Bastiaens PI (2002) Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 295:1708–1711CrossRefPubMedGoogle Scholar
  49. Hanley QS, Verveer PJ, Gemkow MJ, Arndt-Jovin D, Jovin TM (1999) An optical sectioning programmable array microscope implemented with a digital micromirror device. J Microsc 196(3):317–331CrossRefPubMedGoogle Scholar
  50. Hanley QS, Verveer PJ, Arndt-Jovin DJ, Jovin TM (2000) Three-dimensional spectral imaging by hadamard transform spectroscopy in a programmable array microscope. J Microsc 197(1):5–14CrossRefPubMedGoogle Scholar
  51. Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141:929–942CrossRefPubMedGoogle Scholar
  52. Harris RC, Chung E, Coffey RJ (2003) EGF receptor ligands. Exp Cell Res 284:2–13CrossRefPubMedGoogle Scholar
  53. Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA 91:12501–12504PubMedGoogle Scholar
  54. Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373:663–664CrossRefGoogle Scholar
  55. Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182CrossRefPubMedGoogle Scholar
  56. Heintzmann R, Cremer C (2002) Axial tomographic confocal fluorescence microscopy. J Microsc 206:7–23CrossRefPubMedGoogle Scholar
  57. Heintzmann R, Hanley QS, Arndt-Jovin D, Jovin TM (2001) A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images. J Microsc 204:119–135CrossRefPubMedGoogle Scholar
  58. Hell S, Stelzer EHK (1992) Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Opt Commun 93:277–282CrossRefGoogle Scholar
  59. Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21:1347–1355CrossRefPubMedGoogle Scholar
  60. Holbro T, Civenni G, Hynes NE (2003) The ErbB receptors and their role in cancer progression. Exp Cell Res 284:99–110CrossRefPubMedGoogle Scholar
  61. Hollinshead M, Sanderson J, Vaux DJ (1997) Anti-biotin antibodies offer superior organelle-specific labeling of mitochondria over avidin or streptavidin. J Histochem Cytochem 45:1053–1057PubMedGoogle Scholar
  62. Hu CD, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21:539–545CrossRefPubMedGoogle Scholar
  63. Hu CD, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798CrossRefPubMedGoogle Scholar
  64. Hudson PJ, Souriau C (2003) Engineered antibodies. Nat Med 9:129–134CrossRefPubMedGoogle Scholar
  65. Hwang J, Tamm LK, Böhm C, Ramalingam TS, Betzig E, Edidin M (1995) Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy. Science 270:610–614PubMedGoogle Scholar
  66. Hwang J, Gheber LA, Margolis L, Edidin M (1998) Domains in cell plasma membranes investigated by near-field scanning optical microscopy. Biophys J 74:2184–2190PubMedGoogle Scholar
  67. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51CrossRefPubMedGoogle Scholar
  68. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395CrossRefPubMedGoogle Scholar
  69. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650PubMedGoogle Scholar
  70. Jenei A, Kirsch AK, Subramaniam V, Arndt-Jovin DJ, Jovin TM (1999) Picosecond multiphoton scanning near-field optical microscopy. Biophys J 76:1092–1100PubMedGoogle Scholar
  71. Jovin TM (2003) Quantum dots finally come of age. Nat Biotechnol 21:32–33CrossRefPubMedGoogle Scholar
  72. Jovin TM, Arndt Jovin DJ (1989) FRET microscopy: digital imaging of fluorescence resonance energy transfer. Application in cell biology. In: Kohen E, Hirschberg JG (eds) Cell structure and function by microspectrofluorometry. Academic Press, San Diego, pp 99–117Google Scholar
  73. Jovin TM, Morris SJ, Striker G, Schultens HA, Digweed M, Arndt-Jovin DJ (1976) Automatic sizing and separation of particles by ratios of light scattering intensities. J Histochem Cytochem 24:269–283PubMedGoogle Scholar
  74. Ju W, Morishita W, Tsui J, Gaietta G, Deerinck TJ, Adams SR, Garner CC, Tsien RY, Ellisman MH, Malenka RC (2004) Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci 7:244–253CrossRefPubMedGoogle Scholar
  75. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2003) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97CrossRefPubMedGoogle Scholar
  76. Kirpotin D, Park JW, Hong K, Zalipsky S, Li WL, Carter P, Benz CC, Papahadjopoulos D (1997) Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 36:66–75CrossRefPubMedGoogle Scholar
  77. Kirsch AK, Subramaniam V, Striker G, Schnetter C, Arndt Jovin D, Jovin TM (1998) Continuous wave two-photon scanning near-field optical microscopy. Biophys J 75:1513–1521PubMedGoogle Scholar
  78. Koyoma-Honda I, Ritchie K, Fujiwara T, Iino R, Murakoshi H, Kasai RS, Kusumi A (2005) Fluorescence imaging for monitoring the colocalization of two single molecules in living cells. Biophys J 88:2126–2136CrossRefPubMedGoogle Scholar
  79. Kurokawa K, Mochizuki N, Ohba Y, Mizuno H, Miyawaki A, Matsuda M (2001) A pair of fluorescent resonance energy transfer-based probes for tyrosine phosphorylation of the CrkII adaptor protein in vivo. J Biol Chem 276:31305–31310CrossRefPubMedGoogle Scholar
  80. Labas YA, Gurskaya NG, Yanushevich YG, Fradkov AF, Lukyanov KA, Lukyanov SA, Matz MV (2002) Diversity and evolution of the green fluorescent protein family. Proc Natl Acad Sci USA 99:4256–4261CrossRefPubMedGoogle Scholar
  81. Le XF, Vadlamudi R, McWatters A, Bae DS, Mills GB, Kumar R, Bast RC Jr (2000) Differential signaling by an anti-p185(HER2) antibody and heregulin. Cancer Res 60:3522–3531PubMedGoogle Scholar
  82. Lewis A (1991) The optical near-field and cell biology. Semin Cell Biol 2:187–192PubMedGoogle Scholar
  83. Lewis A, Isaacson M, Harootunian A, Muray A (1984) Development of a 500 Å spatial resolution light microscope. I. Light is efficiently transmitted through lambda/16 diameter apertures. Ultramicroscopy 13:227–231CrossRefGoogle Scholar
  84. Lewis A, Taha H, Strinkovski A, Manevitch A, Khatchatouriants A, Dekhter R, Ammann E (2003) Near-field optics: from subwavelength illumination to nanometric shadowing. Nat Biotechnol 21:1378–1386CrossRefPubMedGoogle Scholar
  85. Lidke DS, Nagy P, Barisas BG, Heintzmann R, Post JN, Lidke KA, Clayton AH, Arndt-Jovin DJ, Jovin TM (2003) Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). Biochem Soc Trans 31:1020–1027PubMedGoogle Scholar
  86. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22:198–203CrossRefPubMedGoogle Scholar
  87. Matkó J, Szöllősi J, Trón L, Damjanovich S (1988) Luminescence spectroscopic approaches in studying cell surface dynamics. Q Rev Biophys 21:479–544PubMedGoogle Scholar
  88. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973CrossRefPubMedGoogle Scholar
  89. McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725CrossRefPubMedGoogle Scholar
  90. Mekler VM (1994) A photochemical technique to enhance sensitivity of detection of fluorescence resonance energy transfer. Photochem Photobiol 59:615–620Google Scholar
  91. Mekler VM, Averbakh AZ, Sudarikov AB, Kharitonova OV (1997) Fluorescence energy transfer-sensitized photobleaching of a fluorescent label as a tool to study donor-acceptor distance distributions and dynamics in protein assemblies: studies of a complex of biotinylated IgM with streptavidin and aggregates of concanavalin A. J Photochem Photobiol B 40:278–287CrossRefPubMedGoogle Scholar
  92. Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378:386–390CrossRefPubMedGoogle Scholar
  93. Michalet X, Pinaud F, Lacoste TD, Dahan M, Bruchez MP, Alivisatos AP, Weiss S (2001) Properties of fluorescent semiconductor nanocrystals and their application to biological labeling. Single Mol 2:261–276Google Scholar
  94. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887CrossRefPubMedGoogle Scholar
  95. Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 96:2135–2140CrossRefPubMedGoogle Scholar
  96. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90CrossRefPubMedGoogle Scholar
  97. Nagy P, Bene L, Balázs M, Hyun WC, Lockett SJ, Chiang NY, Waldman FM, Feuerstein BG, Damjanovich S, Szöllősi J (1998a) EGF-induced redistribution of erbB2 on breast tumor cells: flow and image cytometric energy transfer measurements. Cytometry 32:120–131CrossRefPubMedGoogle Scholar
  98. Nagy P, Vámosi G, Bodnár A, Lockett SJ, Szöllősi J (1998b) Intensity-based energy transfer measurements in digital imaging microscopy. Eur Biophys J 27:377–389CrossRefPubMedGoogle Scholar
  99. Nagy P, Jenei A, Damjanovich S, Jovin TM, Szöllősi J (1999a) Complexity of signal transduction mediated by erbB2: clues to the potential of receptor-targeted cancer therapy. Pathol Oncol Res 5:255–271CrossRefPubMedGoogle Scholar
  100. Nagy P, Jenei A, Kirsch AK, Szöllősi J, Damjanovich S, Jovin TM (1999b) Activation-dependent clustering of the erbB2 receptor tyrosine kinase detected by scanning near-field optical microscopy. J Cell Sci 112:1733–1741PubMedGoogle Scholar
  101. Nagy P, Vereb G, Sebestyen Z, Horvath G, Lockett SJ, Damjanovich S, Park JW, Jovin TM, Szöllősi J (2002) Lipid rafts and the local density of ErbB proteins influence the biological role of homo-and heteroassociations of ErbB2. J Cell Sci 115:4251–4262CrossRefPubMedGoogle Scholar
  102. Neve RM, Nielsen UB, Kirpotin D, Poul MA, Marks JD, Benz CC (2001) Biological effects of anti-ErbB2 single chain antibodies selected for internalizing function. Biochem Biophys Res Commun 280:274–279CrossRefPubMedGoogle Scholar
  103. Niswender KD, Blackman SM, Rohde L, Magnuson MA, Piston DW (1995) Quantitative imaging of green fluorescent protein in cultured cells: comparison of microscopic techniques, use in fusion proteins and detection limits. J Microsc 180(2):109–116PubMedGoogle Scholar
  104. Oancea E, Teruel MN, Quest AF, Meyer T (1998) Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J Cell Biol 140:485–498CrossRefPubMedGoogle Scholar
  105. Oertner TG (2002) Functional imaging of single synapses in brain slices. Exp Physiol 87:733–736CrossRefPubMedGoogle Scholar
  106. Ormerod MG (1994) Flow cytometry. A practical approach. Oxford University Press, OxfordGoogle Scholar
  107. Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395PubMedGoogle Scholar
  108. Park JW, Hong K, Carter P, Asgari H, Guo LY, Keller GA, Wirth C, Shalaby R, Kotts C, Wood WI, Papahadjopoulos D, Benz CC (1995) Development of anti-p185HER2 immunoliposomes for cancer therapy. Proc Natl Acad Sci USA 92:1327–1331PubMedGoogle Scholar
  109. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877CrossRefPubMedGoogle Scholar
  110. Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73:2782–2790PubMedGoogle Scholar
  111. Patterson GH, Piston DW, Barisas BG (2000) Forster distances between green fluorescent protein pairs. Anal Biochem 284:438–440CrossRefPubMedGoogle Scholar
  112. Pawley J (1995) Handbook of biological confocal microscopy. Plenum Press, New YorkGoogle Scholar
  113. Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119:7019–7029CrossRefGoogle Scholar
  114. Perrin F (1932) Théorie quantique des transferts d’activation entre molécules de méme espéce. Cas des solutions fluorescentes. Ann Phys (Paris) 17:283–314Google Scholar
  115. Post JN, Lidke KA, Rieger B, Arndt-Jovin DJ (2005) One-and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos. 579:325–330Google Scholar
  116. Rehm M, Dussmann H, Janicke RU, Tavare JM, Kogel D, Prehn JH (2002) Single-cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. Role of caspase-3. J Biol Chem 277:24506–24514CrossRefPubMedGoogle Scholar
  117. Rekas A, Alattia JR, Nagai T, Miyawaki A, Ikura M (2002) Crystal structure of venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity. J Biol Chem 277:50573–50578CrossRefPubMedGoogle Scholar
  118. Reynolds AR, Tischer C, Verveer PJ, Rocks O, Bastiaens PI (2003) EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat Cell Biol 5:447–453CrossRefPubMedGoogle Scholar
  119. Rizzo MA, Shome K, Watkins SC, Romero G (2000) The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. J Biol Chem 275:23911–23918CrossRefPubMedGoogle Scholar
  120. Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449CrossRefPubMedGoogle Scholar
  121. Rocheleau JV, Edidin M, Piston DW (2003) Intrasequence GFP in class I MHC molecules, a rigid probe for fluorescence anisotropy measurements of the membrane environment. Biophys J 84:4078–4086PubMedGoogle Scholar
  122. Runnels LW, Scarlata SF (1995) Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys J 69:1569–1583PubMedGoogle Scholar
  123. Sacchetti A, Subramaniam V, Jovin TM, Alberti S (2002) Oligomerization of DsRed is required for the generation of a functional red fluorescent chromophore. FEBS Lett 525:13–19CrossRefPubMedGoogle Scholar
  124. Sato M, Ozawa T, Inukai K, Asano T, Umezawa Y (2002) Fluorescent indicators for imaging protein phosphorylation in single living cells. Nat Biotechnol 20:287–294CrossRefPubMedGoogle Scholar
  125. Sausville EA, Elsayed Y, Monga M, Kim G (2003) Signal transduction-directed cancer treatments. Annu Rev Pharmacol Toxicol 43:199–231CrossRefPubMedGoogle Scholar
  126. Sawano A, Takayama S, Matsuda M, Miyawaki A (2002) Lateral propagation of EGF signaling after local stimulation is dependent on receptor density. Dev Cell 3:245–257CrossRefPubMedGoogle Scholar
  127. Sebestyén Z, Nagy P, Horváth G, Vámosi G, Debets R, Gratama JW, Alexander DR, Szöllősi J (2002) Long wavelength fluorophores and cell-by-cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual-laser benchtop flow cytometer. Cytometry 48:124–135CrossRefPubMedGoogle Scholar
  128. Shapiro HM (2002) Practical flow cytometry. Wiley, New YorkGoogle Scholar
  129. Sheppard CJR, Gu M (1990) Image formation in 2-photon fluorescence microscopy. Optik 86:104–106Google Scholar
  130. Shilo BZ (2003) Signaling by the Drosophila epidermal growth factor receptor pathway during development. Exp Cell Res 284:140–149CrossRefPubMedGoogle Scholar
  131. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239CrossRefPubMedGoogle Scholar
  132. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39CrossRefPubMedGoogle Scholar
  133. Skarpen E, Johannessen LE, Bjerk K, Fasteng H, Guren TK, Lindeman B, Thoresen GH, Christoffersen T, Stang E, Huitfeldt HS, Madshus IH (1998) Endocytosed epidermal growth factor (EGF) receptors contribute to the EGF-mediated growth arrest in A431 cells by inducing a sustained increase in p21/CIP1. Exp Cell Res 243:161–172CrossRefPubMedGoogle Scholar
  134. Sliwkowski MX, Schaefer G, Akita RW, Lofgren JA, Fitzpatrick VD, Nuijens A, Fendly BM, Cerione RA, Vandlen RL, Carraway KL (1994) Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J Biol Chem 269:14661–14665PubMedGoogle Scholar
  135. Soling A, Simm A, Rainov N (2002) Intracellular localization of Herpes simplex virus type 1 thymidine kinase fused to different fluorescent proteins depends on choice of fluorescent tag. FEBS Lett 527:153–158CrossRefPubMedGoogle Scholar
  136. Song L, Hennink EJ, Young IT, Tanke HJ (1995) Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys J 68:2588–2600PubMedGoogle Scholar
  137. Song L, Varma CA, Verhoeven JW, Tanke HJ (1996) Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy. Biophys J 70:2959–2968PubMedGoogle Scholar
  138. Song L, van Gijlswijk RPM, Young IT, Tanke HJ (1997) Influence of fluorochrome labeling density on the photobleaching kinetics of fluorescein in microscopy. Cytometry 27:213–223CrossRefPubMedGoogle Scholar
  139. Sorkin A, McClure M, Huang F, Carter R (2000) Interaction of EGF receptor and grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr Biol 10:1395–1398CrossRefPubMedGoogle Scholar
  140. Squire A, Verveer PJ, Rocks O, Bastiaens PI (2004) Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells. J Struct Biol 147:62–69CrossRefPubMedGoogle Scholar
  141. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846CrossRefPubMedGoogle Scholar
  142. Szöllősi J, Trón L, Damjanovich S, Helliwell SH, Arndt Jovin D, Jovin TM (1984) Fluorescence energy transfer measurements on cell surfaces: a critical comparison of steady-state fluorimetric and flow cytometric methods. Cytometry 5:210–216CrossRefPubMedGoogle Scholar
  143. Szöllősi J, Mátyus L, Trón L, Balázs M, Ember I, Fulwyler MJ, Damjanovich S (1987) Flow cytometric measurements of fluorescence energy transfer using single laser excitation. Cytometry 8:120–128CrossRefPubMedGoogle Scholar
  144. Szöllősi J, Damjanovich S, Mátyus L (1998) Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research. Cytometry 34:159–179CrossRefPubMedGoogle Scholar
  145. Tarnok A, Gerstner AO (2002) Clinical applications of laser scanning cytometry. Cytometry 50:133–143CrossRefPubMedGoogle Scholar
  146. Teruel MN, Meyer T (2002) Parallel single-cell monitoring of receptor-triggered membrane translocation of a calcium-sensing protein module. Science 295:1910–1912CrossRefPubMedGoogle Scholar
  147. Tour O, Meijer RM, Zacharias DA, Adams SR, Tsien RY (2003) Genetically targeted chromophore-assisted light inactivation. Nat Biotechnol 21:1505–1508CrossRefPubMedGoogle Scholar
  148. Trón L, Szöllősi J, Damjanovich S, Helliwell SH, Arndt Jovin DJ, Jovin TM (1984) Flow cytometric measurement of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell-by-cell basis. Biophys J 45:939–946PubMedGoogle Scholar
  149. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544CrossRefPubMedGoogle Scholar
  150. Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, Ratzkin BJ, Yarden Y (1996) A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 16:5276–5287PubMedGoogle Scholar
  151. Uster PS, Pagano RE (1986) Resonance energy transfer microscopy: observations of membrane-bound fluorescent probes in model membranes and in living cells. J Cell Biol 103:1221–1234CrossRefPubMedGoogle Scholar
  152. van der Linden RH, Frenken LG, de Geus B, Harmsen MM, Ruuls RC, Stok W, de Ron L, Wilson S, Davis P, Verrips CT (1999) Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta 1431:37–46PubMedGoogle Scholar
  153. Vereb G, Meyer CK, Jovin TM (1997) Novel microscope-based approaches for the investigation of protein-protein interactions in signal transduction. NATO ASI Ser H102:49–52Google Scholar
  154. Vereb G, Matkó J, Vámosi G, Ibrahim SM, Magyar E, Varga S, Szöllősi J, Jenei A, Gáspár R Jr, Waldmann TA, Damjanovich S (2000) Cholesterol-dependent clustering of IL-2Ralpha and its colocalization with HLA and CD48 on T lymphoma cells suggest their functional association with lipid rafts. Proc Natl Acad Sci USA 97:6013–6018CrossRefPubMedGoogle Scholar
  155. Vereb G, Nagy P, Park JW, Szöllősi J (2002) Signaling revealed by mapping molecular interactions: implications for ErbB-targeted cancer immunotherapies. Clin Appl Immunol Rev 2:169–186CrossRefGoogle Scholar
  156. Volkmer A, Subramaniam V, Birch DJ, Jovin TM (2000) One-and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. Biophys J 78:1589–1598PubMedGoogle Scholar
  157. Weber G, Shinitzky M (1970) Failure of energy transfer between identical aromatic molecules on excitation at the long wave edge of the absorption spectrum. Proc Natl Acad Sci USA 65:823–830Google Scholar
  158. Wiley HS (2003) Trafficking of the ErbB receptors and its influence on signaling. Exp Cell Res 284:78–88CrossRefPubMedGoogle Scholar
  159. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46CrossRefPubMedGoogle Scholar
  160. Xu C, Zipfel W, Shear JB, Williams RM, Webb WW (1996) Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci USA 93:10763–10768CrossRefPubMedGoogle Scholar
  161. Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251CrossRefPubMedGoogle Scholar
  162. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137CrossRefPubMedGoogle Scholar
  163. Young RM, Arnette JK, Roess DA, Barisas BG (1994) Quantitation of fluorescence energy transfer between cell surface proteins via fluorescence donor photobleaching kinetics. Biophys J 67:881–888PubMedGoogle Scholar
  164. Youvan DC, Michel-Beyerle ME (1996) Structure and fluorescence mechanism of GFP. Nat Biotechnol 14:1219–1220CrossRefPubMedGoogle Scholar
  165. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916CrossRefPubMedGoogle Scholar
  166. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918CrossRefPubMedGoogle Scholar
  167. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Péter Nagy
  • György Vereb
  • Janine N. Post
  • Elza Friedländer
  • János Szölloősi

There are no affiliations available

Personalised recommendations