Signal Transduction by Ion Channels in Lymphocytes

  • Zoltán Varga
  • Rezsoő Gáspár
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 8)


Potassium Channel Regulatory Volume Decrease Immunological Synapse Human Peripheral Blood Lymphocyte Store Depletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acuto O, Cantrell D (2000) T cell activation and the cytoskeleton. Annu Rev Immunol 18:165–184CrossRefPubMedGoogle Scholar
  2. Ashley RH (2003) Challenging accepted ion channel biology: p64 and the CLIC family of putative intracellular anion channel proteins (Review). Mol Membr Biol 20:1–11CrossRefPubMedGoogle Scholar
  3. Beeton C, Barbaria J, Giraud P, Devaux J, Benoliel AM, Gola M, Sabatier JM, Bernard D, Crest M, Beraud E (2001a) Selective blocking of voltage-gated K+ channels improves experimental autoimmune encephalomyelitis and inhibits T cell activation. J Immunol 166:936–944PubMedGoogle Scholar
  4. Beeton C, Wulff H, Barbaria J, Clot-Faybesse O, Pennington M, Bernard D, Cahalan MD, Chandy KG, Beraud E (2001b) Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci USA 98:13942–13947CrossRefPubMedGoogle Scholar
  5. Bental M, Deutsch C (1993) Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes. Magn Reson Med 29:317PubMedGoogle Scholar
  6. Bird GS, Putney JW Jr (1993) Inhibition of thapsigargin-induced calcium entry by microinjected guanine nucleotide analogues. Evidence for the involvement of a small G-protein in capacitative calcium entry. J Biol Chem 268:21486–21488PubMedGoogle Scholar
  7. Bock J, Szabo I, Jekle A, Gulbins E (2002) Actinomycin D-induced apoptosis involves the potassium channel Kv1.3. Biochem Biophys Res Commun 295:526–531CrossRefPubMedGoogle Scholar
  8. Bock J, Szabo I, Gamper N, Adams C, Gulbins E (2003) Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms. Biochem Biophys Res Commun 305:890–897CrossRefPubMedGoogle Scholar
  9. Boehning D, Patterson RL, Snyder SH (2004) Apoptosis and calcium: new roles for cytochrome c and inositol 1,4,5-trisphosphate. Cell Cycle 3:252–254PubMedGoogle Scholar
  10. Bortner CD, Hughes FM Jr, Cidlowski JA (1997) A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem 272:32436–32442CrossRefPubMedGoogle Scholar
  11. Bourguignon LY, Chu A, Jin H, Brandt NR (1995) Ryanodine receptor-ankyrin interaction regulates internal Ca2+ release in mouse T-lymphoma cells. J Biol Chem 270:17917–17922CrossRefPubMedGoogle Scholar
  12. Bowlby MR, Fadool DA, Holmes TC, Levitan IB (1997) Modulation of the Kv1.3 potassium channel by receptor tyrosine kinases. J Gen Physiol 110:601–610CrossRefPubMedGoogle Scholar
  13. Bromley SK, Burack WR, Johnson KG, Somersalo K, Sims TN, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (2001) The immunological synapse. Annu Rev Immunol 19:375–396CrossRefPubMedGoogle Scholar
  14. Cahalan MD, Chandy KG (1997) Ion channels in the immune system as targets for immunosuppression. Curr Opin Biotechnol 8:749–756CrossRefPubMedGoogle Scholar
  15. Cahalan MD, Lewis RS (1988) Role of potassium and chloride channels in volume regulation by T lymphocytes. In: Gunn RB, Parker JC (eds) Cell physiology of blood. Rockefeller University Press, New York, pp 281–302Google Scholar
  16. Cahalan MD, Lewis RS (1990) Functional roles of ion channels in lymphocytes. Semin Immunol 2:107–117PubMedGoogle Scholar
  17. Cahalan MD, Chandy KG, Decoursey TE, Gupta S (1985) A voltage-gated potassium channel in human T lymphocytes. J Physiol (Lond) 358:197–237PubMedGoogle Scholar
  18. Cahalan MD, Chandy KG, Decoursey TE, Gupta S, Lewis RS, Sutro JB (1987) Ion channels in T lymphocytes. Adv Exp Med Biol 213:85–101PubMedGoogle Scholar
  19. Cahalan MD, Wulff H, Chandy KG (2001) Molecular properties and physiological roles of ion channels in the immune system. J Clin Immunol 21:235–252CrossRefPubMedGoogle Scholar
  20. Caron-Leslie LA, Cidlowski JA (1991) Similar actions of glucocorticoids and calcium on the regulation of apoptosis in S49 cells. Mol Endocrinol 5:1169–1179PubMedGoogle Scholar
  21. Chandy KG, Decoursey TE, Cahalan MD, McLaughlin C, Gupta S (1984) Voltage-gated potassium channels are required for human T lymphocyte activation. J Exp Med 160:369–385CrossRefPubMedGoogle Scholar
  22. Cheung RK, Grinstein S, Dosch HM, Gelfand EW (1982) Volume regulation by human lymphocytes: characterization of the ionic basis for regulatory volume decrease. J Cell Physiol 112:189–196CrossRefPubMedGoogle Scholar
  23. Chung I, Schlichter LC (1997) Native Kv1.3 channels are upregulated by protein kinase C. J Membr Biol 156:73–85CrossRefPubMedGoogle Scholar
  24. Chvatchko Y, Valera S, Aubry JP, Renno T, Buell G, Bonnefoy JY (1996) The involvement of an ATPgated ion channel, P(2X1), in thymocyte apoptosis. Immunity 5:275–283CrossRefPubMedGoogle Scholar
  25. Compton MM, Caron LA, Cidlowski JA (1987) Glucocorticoid action on the immune system. J Steroid Biochem 27:201–208CrossRefPubMedGoogle Scholar
  26. Crabtree GR (1989) Contingent genetic regulatory events in T lymphocyte activation. Science 243:355–361PubMedGoogle Scholar
  27. Crabtree GR (1999) Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell 96:611–614CrossRefPubMedGoogle Scholar
  28. Dallaporta B, Hirsch T, Susin SA, Zamzami N, Larochette N, Brenner C, Marzo I, Kroemer G (1998) Potassium leakage during the apoptotic degradation phase. J Immunol 160:5605–5615PubMedGoogle Scholar
  29. Davis DM (2002) Assembly of the immunological synapse for T cells and NK cells. Trends Immunol 23:356–363CrossRefPubMedGoogle Scholar
  30. Decoursey TE, Chandy KG, Gupta S, Cahalan MD (1984) Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature 307:465–468CrossRefPubMedGoogle Scholar
  31. Deutsch C, Chen L-Q (1993) Heterologous expression of specific K+ channels in T lymphocytes: functional consequences for volume regulation. Proc Natl Acad Sci USA 90:10036–10040PubMedGoogle Scholar
  32. Deutsch C, Lee SC (1989) Modulation of K+ currents in human lymphocytes by pH. J Physiol (Lond) 413:399–413PubMedGoogle Scholar
  33. Deutsch C, Krause D, Lee SC (1986) Voltage-gated potassium conductance in human T lymphocytes stimulated with phorbol ester. J Physiol (Lond) 372:405–423PubMedGoogle Scholar
  34. Deutsch C, Price M, Lee S, King VF, Garcia ML (1991) Characterization of high affinity binding sites for charybdotoxin in human T lymphocytes. Evidence for association with the voltage-gated K+ channel. J Biol Chem 266:3668–3674PubMedGoogle Scholar
  35. Fanger CM, Ghanshani S, Logsdon NJ, Rauer H, Kalman K, Zhou J, Beckingham K, Chandy KG, Cahalan MD, Aiyar J (1999) Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. J Biol Chem 274:5746–5754CrossRefPubMedGoogle Scholar
  36. Fanger CM, Rauer H, Neben AL, Miller MJ, Wulff H, Rosa JC, Ganellin CR, Chandy KG, Cahalan MD (2001) Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels. J Biol Chem 276:12249–12256CrossRefPubMedGoogle Scholar
  37. Fasolato C, Hoth M, Penner R (1993) A GTP-dependent step in the activation mechanism of capacitative calcium influx. J Biol Chem 268:20737–20740PubMedGoogle Scholar
  38. Fischer BS, Qin D, Kim K, McDonald TV (2001) Capsaicin inhibits Jurkat T-cell activation by blocking calcium entry current I (CRAC). J Pharmacol Exp Ther 299:238–246PubMedGoogle Scholar
  39. Freedman BD, Price M, Deutsch C (1992) Evidence for voltage modulation of IL2 production by human blood lymphocytes. J Immunol 149:3784–3794PubMedGoogle Scholar
  40. Friesen C, Herr I, Krammer PH, Debatin KM (1996) Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nat Med 2:574–577CrossRefPubMedGoogle Scholar
  41. Gallin EK, Sheehy PA (1988) Leukocyte ion channels and their functional implications. In: Gallin JI, Goldstein IM, Snyderman R (eds) Inflammation: basic principles and clinical correlates. Raven Press, New York, pp 651–664Google Scholar
  42. Gardner P, McDonald T, Nishimoto I, Wagner J, Schumann M, Chen J, Schulman H (1991) Regulation of lymphocyte chloride channels. Adv Exp Med Biol 290:319–326PubMedGoogle Scholar
  43. Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA, Cahalan MD, Chandy KG (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem 275:37137–37149CrossRefPubMedGoogle Scholar
  44. Gomez-Angelats M, Bortner CD, Cidlowski JA (2000) Cell volume regulation in immune cell apoptosis. Cell Tissue Res 301:33–42CrossRefPubMedGoogle Scholar
  45. Gong J, Xu J, Bezanilla M, van Huizen R, Derin R, Li M (1999) Differential stimulation of PKC phosphorylation of potassium channels by ZIP1 and ZIP2. Science 285:1565–1569CrossRefPubMedGoogle Scholar
  46. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227CrossRefPubMedGoogle Scholar
  47. Grassme H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276:20589–20596CrossRefPubMedGoogle Scholar
  48. Grinstein S, Dixon SJ (1989) Ion transport, membrane potential, and cytoplasmic pH in lymphocytes: changes during activation. Physiol Rev 69:417–481PubMedGoogle Scholar
  49. Grinstein S, Smith JD (1990) Calcium-independent cell volume regulation in human T lymphocytes. Inhibition by charybdotoxin. J Gen Physiol 95:97–120CrossRefPubMedGoogle Scholar
  50. Grinstein S, Rothstein A, Sarkadi B, Gelfand EW (1984) Responses of lymphocytes to anisotonic media: volume-regulating behavior. Am J Physiol 246:C204–C215PubMedGoogle Scholar
  51. Grissmer S, Nguyen AN, Cahalan MD (1993) Calcium-activated potassium channels in resting and activated human T lymphocytes. Expression levels, calcium dependence, ion selectivity, and pharmacology. J Gen Physiol 102:601–630CrossRefPubMedGoogle Scholar
  52. Gulbins E, Szabo I, Baltzer K, Lang F (1997) Ceramide-induced inhibition of T lymphocyte voltage-gated potassium channel is mediated by tyrosine kinases. Proc Natl Acad Sci USA 94:7661–7666CrossRefPubMedGoogle Scholar
  53. Guse AH, da Silva CP, Emmrich F, Ashamu GA, Potter BV, Mayr GW (1995) Characterization of cyclic adenosine diphosphate-ribose-induced Ca2+ release in T lymphocyte cell lines. J Immunol 155:3353–3359PubMedGoogle Scholar
  54. Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, Heyer P, Hohenegger M, Ashamu GA, Schulze-Koops H, Potter BV, Mayr GW (1999) Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398:70–73CrossRefPubMedGoogle Scholar
  55. Hajas G, Zsiros E, Laszlo T, Hajdu P, Somodi S, Rethi B, Gogolak P, Ludanyi K, Panyi G, Rajnavolgyi E (2004) New phenotypic, functional and electrophysiological characteristics of KG-1 cells. Immunol Lett 92:97–106CrossRefPubMedGoogle Scholar
  56. Hajdu P, Ulens C, Panyi G, Tytgat J (2003a) Drug-and mutagenesis-induced changes in the selectivity filter of a cardiac two-pore background K+ channel. Cardiovasc Res 58:46–54CrossRefPubMedGoogle Scholar
  57. Hajdu P, Varga Z, Pieri C, Panyi G, Gaspar R Jr (2003b) Cholesterol modifies the gating of Kv1.3 in human T lymphocytes. Pflugers Arch 445:674–682PubMedGoogle Scholar
  58. Hanada T, Lin L, Chandy KG, Oh SS, Chishti AH (1997) Human homologue of the Drosophila discs large tumor suppressor binds to p56lck tyrosine kinase and Shaker type Kv1.3 potassium channel in T lymphocytes. J Biol Chem 272:26899–26904CrossRefPubMedGoogle Scholar
  59. Hermosura MC, Monteilh-Zoller MK, Scharenberg AM, Penner R, Fleig A (2002) Dissociation of the store-operated calcium current I (CRAC) and the Mg-nucleotide-regulated metal ion current MagNuM. J Physiol 539:445–458CrossRefPubMedGoogle Scholar
  60. Hirota J, Furuichi T, Mikoshiba K (1999) Inositol 1,4,5-trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner. J Biol Chem 274:34433–34437CrossRefPubMedGoogle Scholar
  61. Holdorf AD, Lee KH, Burack WR, Allen PM, Shaw AS (2002) Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nat Immunol 3:259–264CrossRefPubMedGoogle Scholar
  62. Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 275:H1567–H1576PubMedGoogle Scholar
  63. Hughes FM Jr, Bortner CD, Purdy GD, Cidlowski JA (1997) Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem 272:30567–30576CrossRefPubMedGoogle Scholar
  64. Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352:244–247CrossRefPubMedGoogle Scholar
  65. Jacobs DB, Lee T-P, Jung CY, Mookerjee BK (1989) Mechanism of mitogen-induced stimulation of glucose transport in human peripheral blood mononuclear cells. J Clin Invest 83:437PubMedGoogle Scholar
  66. Jayaraman T, Marks AR (1997) T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. Mol Cell Biol 17:3005–3012PubMedGoogle Scholar
  67. Jayaraman T, Ondriasova E, Ondrias K, Harnick DJ, Marks AR (1995) The inositol 1,4,5-trisphosphate receptor is essential for T-cell receptor signaling. Proc Natl Acad Sci USA 92:6007–6011PubMedGoogle Scholar
  68. Jonas EA, Kaczmarek LK (1996) Regulation of potassium channels by protein kinases. Curr Opin Neurobiol 6:318–323CrossRefPubMedGoogle Scholar
  69. Kalman K, Pennington MW, Lanigan MD, Nguyen A, Rauer H, Mahnir V, Paschetto K, Kem WR, Grissmer S, Gutman GA, Christian EP, Cahalan MD, Norton RS, Chandy KG (1998) ShK-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. J Biol Chem 273:32697–32707CrossRefPubMedGoogle Scholar
  70. Kerschbaum HH, Cahalan MD (1999) Single-channel recording of a store-operated Ca2+ channel in Jurkat T lymphocytes. Science 283:836–839CrossRefPubMedGoogle Scholar
  71. Kerschbaum HH, Negulescu PA, Cahalan MD (1997) Ion channels, Ca2+ signaling, and reporter gene expression in antigen-specific mouse T cells. J Immunol 159:1628–1638PubMedGoogle Scholar
  72. Klassen NV, Walker PR, Ross CK, Cygler J, Lach B (1993) Two-stage cell shrinkage and the OER for radiation-induced apoptosis of rat thymocytes. Int J Radiat Biol 64:571–581PubMedGoogle Scholar
  73. Koo GC, Blake JT, Talento A, Nguyen M, Lin S, Sirotina A, Shah K, Mulvany K, Hora D, Cunningham P, Wunderler DL, McManus OB, Slaughter R, Bugianesi R, Felix J, Garcia ML, Williamson J, Kaczorowski GJ, Sigal NH, Springer MS, Feeny W (1997) Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J Immunol 158:5120–5128PubMedGoogle Scholar
  74. Kozak JA, Kerschbaum HH, Cahalan MD (2002) Distinct properties of CRAC and MIC channels in RBL cells. J Gen Physiol 120:221–235PubMedGoogle Scholar
  75. Lee SC, Levy DI, Deutsch C (1992) Diverse K+ channels in primary human T lymphocytes. J Gen Physiol 99:771–793CrossRefPubMedGoogle Scholar
  76. Leonard RJ, Garcia ML, Slaughter RS, Reuben JP (1992) Selective blockers of voltage-gated K+ channels depolarize human T lymphocytes: mechanism of the antiproliferative effect of charybdotoxin. Proc Natl Acad Sci USA 89:10094–10098PubMedGoogle Scholar
  77. Lepple-Wienhues A, Szabo I, Wieland U, Heil L, Gulbins E, Lang F (2000) Tyrosine kinases open lymphocyte chloride channels. Cell Physiol Biochem 10:307–312CrossRefPubMedGoogle Scholar
  78. Levitan I, Almonte C, Mollard P, Garber SS (1995) Modulation of a volume-regulated chloride current by F-actin. J Membr Biol 147:283–294PubMedGoogle Scholar
  79. Levite M, Cahalon L, Peretz A, Hershkoviz R, Sobko A, Ariel A, Desai R, Attali B, Lider O (2000) Extracellular K(+) and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and beta1 integrins. J Exp Med 191:1167–1176CrossRefPubMedGoogle Scholar
  80. Lewis RS, Cahalan MD (1995) Potassium and calcium channels in lymphocytes. Annu Rev Immunol 13:623–653CrossRefPubMedGoogle Scholar
  81. Lewis RS, Ross PE, Cahalan MD (1993) Chloride channels activated by osmotic stress. J Gen Physiol 101:801–826CrossRefPubMedGoogle Scholar
  82. Lin CS, Boltz RC, Blake JT, Nguyen M, Talento A, Fischer PA, Springer MS, Sigal NH, Slaughter RS, Garcia ML, Kaczorowski GJ, Koo GC (1993) Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. J Exp Med 177:637–645CrossRefPubMedGoogle Scholar
  83. Logsdon NJ, Kang J, Togo JA, Christian EP, Aiyar J (1997) A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem 272:32723–32726CrossRefPubMedGoogle Scholar
  84. Macian F, Lopez-Rodriguez C, Rao A (2001) Partners in transcription: NFAT and AP-1. Oncogene 20:2476–2489CrossRefPubMedGoogle Scholar
  85. Maltsev VA (1990) Oscillating and triggering properties of T cell membrane potential. Immunol Lett 26:277–282CrossRefPubMedGoogle Scholar
  86. Martens JR, Navarro-Polanco R, Coppock EA, Nishiyama A, Parshley L, Grobaski TD, Tamkun MM (2000) Differential targeting of Shaker-like potassium channels to lipid rafts. J Biol Chem 275:7443–7446CrossRefPubMedGoogle Scholar
  87. Martens JR, O’Connell K, Tamkun M (2004) Targeting of ion channels to membrane micro-domains: localization of KV channels to lipid rafts. Trends Pharmacol Sci 25:16–21CrossRefPubMedGoogle Scholar
  88. Mathes C, Fleig A, Penner R (1998) Calcium release-activated calcium current (ICRAC) is a direct target for sphingosine. J Biol Chem 273:25020–25030CrossRefPubMedGoogle Scholar
  89. Matiba B, Mariani SM, Krammer PH (1997) The CD95 system and the death of a lymphocyte. Semin Immunol 9:59–68CrossRefPubMedGoogle Scholar
  90. Matkó J, Nagy P, Panyi G, Vereb G, Bene L, Mátyus L, Damjanovich S (1993) Biphasic effect of extracellular ATP on the membrane potential of mouse thymocytes. Biochem Biophys Res Commun 191:378–384CrossRefPubMedGoogle Scholar
  91. Matteson DR, Deutsch C (1984) K+ channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature 307:468–471CrossRefPubMedGoogle Scholar
  92. McCardy CW, Ely CM, Westin E, Carchman RA (1988) Coordination and reversibility of signs for proliferative activation and IL2 mRNA production in human T lymphocytes by phorbol ester and calcium ionophore. J Biol Chem 263:18537–18544PubMedGoogle Scholar
  93. McCormack T, McCormack K, Nadal MS, Vieira E, Ozaita A, Rudy B (1999) The effects of Shaker beta-subunits on the human lymphocyte K+ channel Kv1.3. J Biol Chem 274:20123–20126CrossRefPubMedGoogle Scholar
  94. Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82:429–472PubMedGoogle Scholar
  95. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82–86CrossRefPubMedGoogle Scholar
  96. Nagata S (1994) Apoptosis regulated by a death factor and its receptor: Fas ligand and Fas. Philos Trans R Soc Lond B Biol Sci 345:281–287PubMedGoogle Scholar
  97. Nagy PV, Feher T, Morga S, Matko J (2000) Apoptosis of murine thymocytes induced by extracellular ATP is dose-and cytosolic pH-dependent. Immunol Lett 72:23–30CrossRefPubMedGoogle Scholar
  98. Negulescu PA, Shastri N, Cahalan MD (1994) Intracellular calcium dependence of gene expression in single T lymphocytes. Proc Natl Acad Sci USA 91:2873–2877PubMedGoogle Scholar
  99. Northrop JP, Ullman KS, Crabtree GR (1993) Characterization of the nuclear and cytoplasmic components of the lymphoid-specific nuclear factor of activated T cells (NF-AT) complex. J Biol Chem 268:2917–2923PubMedGoogle Scholar
  100. Oshimi Y, Miyazaki S (1995) Fas antigen-mediated DNA fragmentation and apoptotic morphologic changes are regulated by elevated cytosolic Ca2+ level. J Immunol 154:599–609PubMedGoogle Scholar
  101. Pahapill PA, Schlichter LC (1990) Modulation of potassium channels in human T lymphocytes: effects of temperature. J Physiol (Lond) 422:103–126PubMedGoogle Scholar
  102. Pahapill PA, Schlichter LC (1992) Modulation of potassium channels in intact human T lymphocytes. J Physiol (Lond) 445:407–430PubMedGoogle Scholar
  103. Panyi G, Deutsch C (1996) Assembly and suppression of endogenous Kv1.3 channels in human T cells. J Gen Physiol 107:409–420CrossRefPubMedGoogle Scholar
  104. Panyi G, Sheng Z-F, Tu L-W, Deutsch C (1995) C-type inactivation of a voltage-gated K+ channel occurs by a cooperative mechanism. Biophys J 69:896–904PubMedGoogle Scholar
  105. Panyi G, Gáspár R, Krasznai Z, ter Horst JJ, Ameloot M, Aszalós A, Steels P, Damjanovich S (1996) Immunosuppressors inhibit voltage-gated potassium channels in human peripheral blood lymphocytes. Biochem Biophys Res Commun 221:254–258CrossRefPubMedGoogle Scholar
  106. Panyi G, Bagdany M, Bodnar A, Vamosi G, Szentesi G, Jenei A, Matyus L, Varga S, Waldmann TA, Gaspar R, Damjanovich S (2003) Colocalization and nonrandom distribution of Kv1.3 potassium channels and CD3 molecules in the plasma membrane of human T lymphocytes. Proc Natl Acad Sci USA 100:2592–2597CrossRefPubMedGoogle Scholar
  107. Panyi G, Vamosi G, Bacso Z, Bagdany M, Bodnar A, Varga Z, Gaspar R, Matyus L, Damjanovich S (2004a) Kv1.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proc Natl Acad Sci USA 101:1285–1290CrossRefPubMedGoogle Scholar
  108. Panyi G, Varga Z, Gaspar R (2004b) Ion channels and lymphocyte activation. Immunol Lett 92:55–66CrossRefPubMedGoogle Scholar
  109. Parekh AB, Penner R (1995) Depletion-activated calcium current is inhibited by protein kinase in RBL-2H3 cells. Proc Natl Acad Sci USA 92:7907–7911PubMedGoogle Scholar
  110. Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930PubMedGoogle Scholar
  111. Partiseti M, Le Deist F, Hivroz C, Fischer A, Korn H, Choquet D (1994) The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J Biol Chem 269:32327–32335PubMedGoogle Scholar
  112. Prakriya M, Lewis RS (2002) Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J Gen Physiol 119:487–507CrossRefPubMedGoogle Scholar
  113. Price M, Lee SC, Deutsch C (1989) Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proc Natl Acad Sci USA 86:10171–10175PubMedGoogle Scholar
  114. Putney JW Jr, Broad LM, Braun FJ, Lievremont JP, Bird GS (2001) Mechanisms of capacitative calcium entry. J Cell Sci 114:2223–2229PubMedGoogle Scholar
  115. Randriamampita C, Tsien RY (1993) Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364:809–814CrossRefPubMedGoogle Scholar
  116. Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747CrossRefPubMedGoogle Scholar
  117. Romanenko VG, Rothblat GH, Levitan I (2002) Modulation of endothelial inward-rectifier K+ current by optical isomers of cholesterol. Biophys J 83:3211–3222PubMedGoogle Scholar
  118. Ross PE, Cahalan MD (1995) Ca2+ influx pathways mediated by swelling or stores depletion in mouse thymocytes. J Gen Physiol 106:415–444CrossRefPubMedGoogle Scholar
  119. Ross PE, Garber SS, Cahalan MD (1994) Membrane chloride conductance and capacitance in Jurkat T lymphocytes during osmotic swelling. Biophys J 66:169–178PubMedGoogle Scholar
  120. Sands SB, Lewis RS, Cahalan MD (1989) Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes. J Gen Physiol 93:1061–1074CrossRefPubMedGoogle Scholar
  121. Sarkadi B, Mack E, Rothstein A (1984a) Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. I. Distinctions between volume-activated Cl-and K+ conductance pathways. J Gen Physiol 83:497–512CrossRefPubMedGoogle Scholar
  122. Sarkadi B, Mack E, Rothstein A (1984b) Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. II. Volume-and time-dependent activation and inactivation of ion transport pathways. J Gen Physiol 83:513–527CrossRefPubMedGoogle Scholar
  123. Sarkadi B, Tordai A, Gárdos G (1990) Membrane depolarization selectively inhibits receptor-operated calcium channels in human (Jurkat) T lymphocytes. Biochim Biophys Acta 1027:130–140PubMedGoogle Scholar
  124. Schlichter LC, Grygorczyk R, Pahapill PA, Grygorczyk C (1990) A large, multiple-conductance chloride channel in normal human T lymphocytes. Pflugers Arch 416:413–421CrossRefPubMedGoogle Scholar
  125. Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR (1988) Identification of a putative regulator of early T cell activation genes. Science 241:202–205PubMedGoogle Scholar
  126. Siemen D, Loupatatzis C, Borecky J, Gulbins E, Lang F (1999) Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun 257:549–554CrossRefPubMedGoogle Scholar
  127. Smith CA, Williams GT, Kingston R, Jenkinson EJ, Owen JJ (1989) Apoptosis. Nature 338:10CrossRefGoogle Scholar
  128. Steinert M, Grissmer S (1997) Novel activation stimulus of chloride channels by potassium in human osteoblasts and human leukaemic T lymphocytes. J Physiol 500(3):653–660PubMedGoogle Scholar
  129. Storey NM, Gomez-Angelats M, Bortner CD, Armstrong DL, Cidlowski JA (2003) Stimulation of Kv1.3 potassium channels by death receptors during apoptosis in Jurkat T lymphocytes. J Biol Chem 278:33319–33326CrossRefPubMedGoogle Scholar
  130. Story MD, Stephens LC, Tomasovic SP, Meyn RE (1992) A role for calcium in regulating apoptosis in rat thymocytes irradiated in vitro. Int J Radiat Biol 61:243–251PubMedGoogle Scholar
  131. Su Z, Csutora P, Hunton D, Shoemaker RL, Marchase RB, Blalock JE (2001) A store-operated nonselective cation channel in lymphocytes is activated directly by Ca(2+) influx factor and diacylglycerol. Am J Physiol Cell Physiol 280:C1284–C1292PubMedGoogle Scholar
  132. Szabo I, Gulbins E, Apfel H, Zhang X, Barth P, Busch AE, Schlottmann K, Pongs O, Lang F (1996) Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation. J Biol Chem 271:20465–20469CrossRefPubMedGoogle Scholar
  133. Szabo I, Lepple-Wienhues A, Kaba KN, Zoratti M, Gulbins E, Lang F (1998) Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes. Proc Natl Acad Sci USA 95:6169–6174CrossRefPubMedGoogle Scholar
  134. Szucs A, Szappanos H, Toth A, Farkas Z, Panyi G, Csernoch L, Sziklai I (2004) Differential expression of purinergic receptor subtypes in the outer hair cells of the guinea pig. Hearing Res 196(1–2):2–7CrossRefGoogle Scholar
  135. Thomas N, Bell PA (1981) Glucocorticoid-induced cell-size changes and nuclear fragility in rat thymocytes. Mol Cell Endocrinol 22:71–84CrossRefPubMedGoogle Scholar
  136. Tillman TS, Cascio M (2003) Effects of membrane lipids on ion channel structure and function. Cell Biochem Biophys 38:161–190CrossRefPubMedGoogle Scholar
  137. Trimarchi JR, Liu L, Smith PJ, Keefe DL (2002) Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation. Am J Physiol Cell Physiol 282:C588–C594PubMedGoogle Scholar
  138. Vaca L (1996) Calmodulin inhibits calcium influx current in vascular endothelium. FEBS Lett 390:289–293CrossRefPubMedGoogle Scholar
  139. van der Merwe PA (2002) Formation and function of the immunological synapse. Curr Opin Immunol 14:293–298CrossRefPubMedGoogle Scholar
  140. Vereb G, Panyi G, Balázs M, Mátyus L, Matkó J, Damjanovich S (1990) Effect of cyclosporin A on the membrane potential and Ca2+ level of human lymphoid cell lines and mouse thymocytes. Biochim Biophys Acta 1019:159–165PubMedGoogle Scholar
  141. Verheugen JA, Vijverberg HP, Oortgiesen M, Cahalan MD (1995) Voltage-gated and Ca(2+)-activated K+ channels in intact human T lymphocytes. Noninvasive measurements of membrane currents, membrane potential, and intracellular calcium. J Gen Physiol 105:765–794CrossRefPubMedGoogle Scholar
  142. Weidema AF, Ravesloot JH, Panyi G, Nijweide P, Ypey DL (1993) A Ca2+-dependent K+-channel in freshly isolated and cultured chick osteoclasts. Biochim Biophys Acta 1149:63–72PubMedGoogle Scholar
  143. Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci USA 97:8151–8156CrossRefPubMedGoogle Scholar
  144. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556CrossRefPubMedGoogle Scholar
  145. Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O’Rourke B (2002) Cytoprotective role of Ca2+-activated K+ channels in the cardiac inner mitochondrial membrane. Science 298:1029–1033CrossRefPubMedGoogle Scholar
  146. Yao Y, Ferrer-Montiel AV, Montal M, Tsien RY (1999) Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell 98:475–485CrossRefPubMedGoogle Scholar
  147. Zitt C, Strauss B, Schwarz EC, Spaeth N, Rast G, Hatzelmann A, Hoth M (2004) Potent inhibition of Ca2+ release-activated Ca2+ channels and T-lymphocyte activation by the pyrazole derivative BTP2. J Biol Chem 279:12427–12437CrossRefPubMedGoogle Scholar
  148. Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci USA 90:6295–6299PubMedGoogle Scholar
  149. Zweifach A, Lewis RS (1995) Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J Gen Physiol 105:209–226CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Zoltán Varga
  • Rezsoő Gáspár

There are no affiliations available

Personalised recommendations