Regulation of Smooth Muscle Contraction

  • Ingo Morano


Myosin Heavy Chain Smooth Muscle Contraction Myosin Light Chain Kinase Tonic Contraction Smooth Muscle Myosin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rayment, I., Rypniewski, W.R., Schmidt-Bäse, K., Smith, R., Tomchick, D.R., Benning, M.M., Winkelmann, D.A., Wesenberg, G., Holden, H.M. (1993) Three-dimensional structure of myosin subfragment 1: a molecular motor. Science 261: 50–58PubMedGoogle Scholar
  2. 2.
    Dominguez, R., Freyzon, Y., Trybus, K.M., Cohen, C. (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94: 559–571CrossRefPubMedGoogle Scholar
  3. 3.
    Marston, S.B., Taylor, E.W. (1980) Comparison of the myosin and actomyosin ATPase mechanisms of the four types of vertebrate muscles. J. Mol. Biol. 139: 573–600CrossRefPubMedGoogle Scholar
  4. 4.
    Brenner, B., Eisenberg, E. (1987) The mechanism of muscle contraction. Biochemical, mechanical, and structural approaches to elucidate cross-bridge action in muscle. Basic Res. Cardiol. 82Suppl 2: 3–16PubMedGoogle Scholar
  5. 5.
    Siemankowski, R.F., Wiseman, M.O., White, H.D. (1985) ADP dissociation from actomyosin subfragment 1 is sufficient slow to limit the unloaded shortening velocity in vertebrate muscle. Proc. Natl. Acad. Sci. 82: 658–662PubMedGoogle Scholar
  6. 6.
    Sobieszek, A. (1977) Ca2+ linked phosphorylation of a light chain of vertebrate smooth muscle myosin. Eur. J. Biochem. 118: 533–582Google Scholar
  7. 7.
    Hai, C.M., Murphy, R.A. (1989) Ca2+, cross-bridge phosphorylation, and contraction. Ann. Rev. Physiol. 51: 285–298Google Scholar
  8. 8.
    Dabrowska, R., Sherry, J.M.F., Aromatorio, D.K., Hartshorne, D.J. (1978) Modulator protein as a component of the myosin light chain kinase from chicken gizzard. Biochem. 17: 253–258Google Scholar
  9. 9.
    Ikebe, M. and Hartshorne, D. J. (1985) Phosphorylation of Smooth Muscle Myosin at Two Distinct Sites by Myosin Light Chain Kinase. The Journal of Biological Chemistry 260: 10027–10031PubMedGoogle Scholar
  10. 10.
    Cross, R.A. (1988) What is 10S myosin for? J. Muscle Res. Cell Mot. 9: 108–110Google Scholar
  11. 11.
    Trybus, K.M. (1996) Myosin regulation and assembly. In Biochemistry of smooth muscle contraction, Barany, M., ed. Academic Press, pp 37–46Google Scholar
  12. 12.
    Bresnick, A.R., Wolff-Long, V.L., Baumann, O., Pollard, T.D. (1995) Phosphorylation of threonine-18 of the regulatory light chain dissociates the ATPase and motor properties of smooth muscle myosin II. Biochemistry 34: 12576–12583CrossRefPubMedGoogle Scholar
  13. 13.
    Bresnick, A.R. (1999) Molecular mechanisms of nonmuscle myosin-II regulation. Current Opinion in Cell Biology 11: 26–33CrossRefPubMedGoogle Scholar
  14. 14.
    Deng, J.T., VanLierop, J.E., Sutherland, C., Walsh, M.P. (2001) Ca2+-independent smooth muscle contraction. A novel function for integrin-linked kinase. J. Biol. Chem. 276: 16365–16373PubMedGoogle Scholar
  15. 15.
    Niiro, N., Ikebe, M. (2001) Zipper-interacting protein kinase induces Ca2+-free smooth muscle contraction via myosin light chain phosphorylation. J. Biol. Chem. 276: 29567–29574CrossRefPubMedGoogle Scholar
  16. 16.
    Alessi, D., MacDougall, L.K., Sola, M.M., Ikebe. M., Cohen, P. (1992) The control of protein phosphatase-1 by targeting subunits: the major myosin phosphatase in avian smoth muscle is a novel form of protein phosphatase-1. Eur. J. Biochem. 210: 1023–1035CrossRefPubMedGoogle Scholar
  17. 17.
    Somlyo, A.P., Somlyo, A.V. (2000) Signal transduction by Gproteins, Rho-kinase and protein phosphatase to smooth muscle and nonmuscle myosin II. J. Physiol. 522: 177–185CrossRefPubMedGoogle Scholar
  18. 18.
    Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., Okawa, K., Iwamatsu, A., Kaibuchi, K. (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rhokinase). Science 273: 245–248PubMedGoogle Scholar
  19. 19.
    Muranyi, A., MacDinald, Deng, J.T., Wilson, D.P., Haystead, T.A.J., Walsh, M.P., Erdödi, F., Kiss, E., Wu, Y., Hartshorne, D.J. (2002) Phosphorylation of the myosin phosphatase target subunit by integrin-linked kinase. Biochem. J. 366: 211–216PubMedGoogle Scholar
  20. 20.
    Eto, M., Ohmori, T., Suzuki, M., Furuya, K., Morita, F. (1995) A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J. Biochem. 118: 1104–1107PubMedGoogle Scholar
  21. 21.
    Hamaguchi, T., Ito, M., Feng, J., Seko, T., Koyama, M., Machida, H., Takase, K., Amano, M., Kaibuchi, K., Hartshorne, D.J., Nakano, (2000) Phosphorylation of CPI-17, an inhibitor of myosin phosphatase, by protein kinase N. Biochem. Biophys. Res. Comm. 274: 825–830CrossRefPubMedGoogle Scholar
  22. 22.
    Warshaw, D.M., Desroisiers, J.M., Work, S.S., Trybus, K.M. (1990) Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J. Cell Biol. 111:453–463CrossRefPubMedGoogle Scholar
  23. 23.
    Paul, R.J. (1989) Smooth muscle energetics. Ann. Rev. Physiol. 51: 331–349CrossRefGoogle Scholar
  24. 24.
    Guilford, W.H., Dupuis, D.E., Kennedy, G., Wu, J., Patlak, J.B., Warshaw, D.M. (1997) Smooth and skeletalk muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys. J. 72: 1006–1021PubMedGoogle Scholar
  25. 25.
    Murphy, R.A., Herlith, J.T., Mergerman, J. (1974) Force generation capacity and contractile protein content of arterial smooth muscle. J. Gen. Physiol. 64: 691–705CrossRefPubMedGoogle Scholar
  26. 26.
    Aikawa, M., Sivam, P.N., Kuro-o, M., Kimura, K., Nakahara, K., Takewaki, S., Ueda, M., Yamaguchi, H., Yazaki, Y., Periasami, M., Nagai, R. (1994) Human smooth muscle myosin heavy chain isoforms as molecular markers for vascular development and atherosclerosis. Circ. Res. 73: 1000–1012Google Scholar
  27. 27.
    Gaylinn, B.D., Eddinger, T.J., Martino, P.A., Monical, P.L., Hunt, D.F., Murphy, R.A, (1989) Expression of nonmuscle myosin heavy and light chains in smooth muscle. Am. J. Physiol. 257: C997–C1004PubMedGoogle Scholar
  28. 28.
    Kuro-o, M., Nagai, R., Nakahara, K., Katoh, H., Tsai, R.C., Tsuchimochi, H., Yazaki, Y., Ohkubo, A., Takaku, F. (1991) cDNA cloning of a myosin heavy chain isoform in embryonic smooth muscle and its expression during vascular development and in artheriosclerosis. J. Biol. Chem. 266: 3768–3773PubMedGoogle Scholar
  29. 29.
    Phillips, C.L., Yamakawa, K., Adelstein, R.S. (1995) Cloning of the cDNA encoding nonmuscle myosin heavy chain-B and analysis of human tissues with isoform-specific antibodies. J. Muscle Res. Cell Mot. 16: 390–400Google Scholar
  30. 30.
    Packer, C.S. (1997) Arterial muscle myosin heavy chains and light chains in spontaneous hypertension. Comp. Biochem. Physiol. 117B: 19–28Google Scholar
  31. 31.
    Deng, Z., Liu, P., Claxton, D.F., Lane, S., Callen, D.F., Collins, F.S., Siciliano, M.J. (1993) Genomics 18: 156–159CrossRefPubMedGoogle Scholar
  32. 32.
    Saez, C.G., Myers, J.C., Shows, T.B., Leinwand, L.A. (1990) Human nonmuscle myosin heavy chain mRNA: generation of diversity through alternative polyadenylation. Proc. Natl. Acad. Sci. 87: 116Google Scholar
  33. 33.
    Simons, M., Wang, M., McBride, O.W., Kawamoto, S., Yamakawa, K., Gdula, D., Adelstein, R.S., Weir, L. (991) Human non-muscle myosin heavy chains are encoded by two genes located on different chromosomes. Circ. Res. 69: 530–539Google Scholar
  34. 34.
    Schwartz, S.M., Campbell, G.R., Campbell, J.H. (1986) Replication of smooth muscle cells in vascular disease. Circ. Res. 58: 427–444PubMedGoogle Scholar
  35. 35.
    Kawamoto, S., Adelstein, R.S. (1991) Chicken nonmuscle myosin heavy chains: differential expression of two mRNAs and evidence for two different polypeptides. J. Cell Biol. 112: 915–924CrossRefPubMedGoogle Scholar
  36. 36.
    Morano, I., Erb, G., Sogl, B. (1993) Expression of myosin heavy and light chains changes during pregnancy in the rat uterus. Pflügers Arch. 423: 434–441CrossRefPubMedGoogle Scholar
  37. 37.
    Giuriato, L., Scatena, M., Chiavegato, A., Guidolin, D., Pauletto, P., Sartore, S. (1993) Rabbit ductus arteriosus during development: anatomical struicture and smooth muscle cell composition. Anat. Rec. 235: 95–110CrossRefPubMedGoogle Scholar
  38. 38.
    Adelstein, R.S., Sellers, J.R. (1996) Myosin structure and function. In: Barany M ed. Biochemistry of smooth muscle contraction. Academic Press Inc. San Diego, California, pp 3–19Google Scholar
  39. 39.
    Berg, J.S., Powell, B.C., Cheney, R.E. (2001) A millennial myosin census. Mol. Biol. Cell 12: 780–794PubMedGoogle Scholar
  40. 40.
    Rovner, A.S., Thompson, M.M., Murphy, R.A. (1986) Two different myosin heavy chains are found in smooth muscle. Am. J. Physiol. 250: C861–C870PubMedGoogle Scholar
  41. 41.
    Nagai, R., Kuro-o, M., Babij, P., Periasamy, M. (1989) Identification of two types of smooth muscle myosin heavy chain isoforms by cDNA cloning and immunoblot analysis. J. Biol. Chem. 264: 9734–9737PubMedGoogle Scholar
  42. 42.
    Hamada, Y., Yanagisawa, M., Katsugarawa, Y., Coleman, J.R., Nagata, S., Matsuda, G., Masaki, T. (1990) Distinct vascular and intestinal smooth muscle myosin heavy chain mRNAs are encoded by a single-copy gene in the chicken. Biochem. Biophys. Res. Commun. 170: 53–58CrossRefPubMedGoogle Scholar
  43. 43.
    White, S., Martin, A., Periasamy, M. (1993) Identification of a novel smooth muscle myosin heavy chain cDNA: isoform diversity in the S1 head region. Am. J. Physiol. 264: C1252–C1258PubMedGoogle Scholar
  44. 44.
    Babij, P. (1993) Tissue-specific and developmentally regulated alternative splicing of a visceral isoform of smooth muscle myosin heavy chain. Nucl. Ac. Res. 21: 1467–1471CrossRefGoogle Scholar
  45. 45.
    Kelley, C.A., Takahashi, M., Yu, J.H., Adelstein, R.S. (1993) An insert of seven amino acids confers enzymatic differences between smooth muscle myosins from the intestines and vasculature. J. Biol. Chem. 268: 12848–12854PubMedGoogle Scholar
  46. 46.
    Morano, I., Chai, G.X., Baltas, L.G., Lamounier-Zepter, V., Lutsch, G., Kott, M., Haase, H., Walther, T., Bader, M. (2000) Smooth muscle contraction without smooth muscle myosin. Nature Cell Biol. 2: 371–375CrossRefPubMedGoogle Scholar
  47. 47.
    Löfgren, M., Ekblad, E., Morano, I., Arner, A. (2003) Nonmuscle myosin motor of smooth muscle. J. Gen. Physiol., in pressGoogle Scholar
  48. 48.
    Dillon, P.F., Aksoy, M.O., Driska, S.P., Murphy, R.A. (1981) Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science 211: 495–497PubMedGoogle Scholar
  49. 49.
    Kamm, K.E., Stull, J.T. (1985) The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Ann. Rev. Pharmacol. Toxicol. 25: 593–620CrossRefGoogle Scholar
  50. 50.
    Mita, M., Yanagihara, H., Hishinuma, S., Saito, M., Walsh, M.P. (2002) Membrane depolarization-induced contraction of rat caudal arterial smooth muscle involves Rhoassociated kinase. Biochem. J. 364: 431–440CrossRefPubMedGoogle Scholar
  51. 51.
    Kupittayanant, S., Burdyga, R., Wray, S. (2001) The effects of inhibiting Rho-associated kinase with Y27632 on force and intracellular calcium in human myometrium. Pflügers Arch 443: 112–114PubMedGoogle Scholar
  52. 52.
    Umemoto, S., Bengur, A.R., Sellers, J.R. (1989) Effect of multiple phosphorylations of smooth and cytoplasmic myosins on movement in an in vitro motility assay. J. Biol. Chem. 264: 1431–1436PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2005

Authors and Affiliations

  • Ingo Morano
    • 1
  1. 1.Division of Molecular Muscle PhysiologyMax-Delbrück-Center BerlinBerlin

Personalised recommendations