Skip to main content

Reservoir Flow Simulation by Adaptive ADER Schemes

  • Chapter

Part of the book series: Mathematics in Industry ((MATHINDUSTRY,volume 7))

Summary

In this chapter, an extension of ADER schemes is presented in order to solve both linear and nonlinear scalar conservation laws on unstructured triangulations. The proposed scheme is conservative and belongs to the class of finite volume schemes. It combines high order reconstruction techniques with a high order flux evaluation method to update cell average values through fluxes across cell interfaces. The ADER approach results in an explicit, one-step scheme based on the solution of generalized Riemann problems across cell interfaces. Moreover, the triangulation is adaptively modified during the simulation to effectively combine high order accuracy with locally refined meshes and therefore reduce the computational costs. The required adaption rules for the refinement and coarsening of the triangular mesh rely on a customized error indicator. Numerical experiments confirm the expected orders of accuracy and show the good performance of the proposed scheme for linear and nonlinear problems. Finally, the adaptive ADER schemes are applied to a test case from oil industry, which plays an important role in the modelling of fluid flow in petroleum reservoirs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abgrall (1994) On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 144, 45–58.

    Article  MathSciNet  Google Scholar 

  2. K. Aziz and A. Settari (1979) Petroleum Reservoir Simulation. Applied Science.

    Google Scholar 

  3. T.J. Barth and P.O. Frederickson (1990) Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction. Technical Report no. 90-0013, AIAA Paper.

    Google Scholar 

  4. M. Batdorf, L.A. Freitag, and C.F. Ollivier-Gooch (1997) Computational study of the effect of unstructured mesh quality on solution efficiency. Proc. 13th AIAA Computational Fluid Dynamics Conference, Snowmass Village, Colorado, 1997.

    Google Scholar 

  5. J. Behrens, A. Iske, and M. Käser (2002) Adaptive meshfree method of backward characteristics for nonlinear transport equations. Meshfree Methods for Partial Differential Equations, M. Griebel and M.A. Schweitzer (eds.), Springer, Berlin, 21–36.

    Google Scholar 

  6. J. Behrens, A. Iske, and S. Pöhn (2001) Effective node adaption for grid-free semi-Lagrangian advection. Discrete Modelling and Discrete Algorithms in Continuum Mechanics, T. Sonar and I. Thomas (eds.), Logos, Berlin, 110–119.

    Google Scholar 

  7. J.M. Buckley and M.C. Leverett (1942) Mechanism of fluid displacement in sands. Trans. AIME 146, 107–116.

    Google Scholar 

  8. B. Cockburn, G. Karniadakis, and C.-W. Shu (2000) The development of discontinuous galerkin methods. Discontinuous Galerkin Methods: Theory, Computation and Applications, B. Cockburn, G. Karniadakis, and C.-W. Shu (eds.), Springer, Berlin, 3–50.

    Google Scholar 

  9. G.R. Cowper (1973) Gaussian quadrature formulas for triangles. Int. J. Numer. Meth. Eng. 7, 405–408.

    Article  MATH  Google Scholar 

  10. J. Duchon (1977) Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Constructive Theory of Functions of Several Variables, W. Schempp and K. Zeller (eds.), Springer, Berlin, 85–100.

    Google Scholar 

  11. O. Friedrich (1998) Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144, 194–212.

    Article  MathSciNet  Google Scholar 

  12. S.K. Godunov (1959) A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47, 271–306.

    MATH  MathSciNet  Google Scholar 

  13. T. Gutzmer and A. Iske (1997) Detection of discontinuities in scattered data approximation. Numerical Algorithms 16(2), 155–170.

    Article  MathSciNet  Google Scholar 

  14. A. Harten and S. Chakravarthy (1991) Multi-dimensional eno schemes for general geometries. Technical Report 91-76, ICASE.

    Google Scholar 

  15. A. Harten, B. Engquist, S. Osher, and S. Chakravarthy (1987) Uniformly high order essentially non-oscillatory schemes, iii. J. Comput. Phys. 71, 231–303.

    Article  MathSciNet  Google Scholar 

  16. C. Hu and C.W. Shu (1999) Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127.

    Article  MathSciNet  Google Scholar 

  17. A. Iske (2002) Scattered data modelling using radial basis functions. Tutorials on Multiresolution in Geometric Modelling, A. Iske, E. Quak, and M.S. Floater (eds.), Springer, Heidelberg, 205–242.

    Google Scholar 

  18. A. Iske and M. Käser (2004) Conservative semi-Lagrangian advection on adaptive unstructured meshes. To appear in Numer. Meth. Part. Diff. Eq.

    Google Scholar 

  19. G.S. Jiang and C.W. Shu (1996) Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228.

    Article  MathSciNet  Google Scholar 

  20. M. Käser, H. Igel, M. Sambridge, and J. Brown (2001) A comparative study of explicit differential operators on arbitrary grids. J. Comput. Acoustics 9, 1111–1125.

    Google Scholar 

  21. D. Kröner (1997) Numerical Schemes for Conservation Laws. Wiley & Teubner.

    Google Scholar 

  22. C.L. Lawson and R.J. Hanson (1995) Solving Least Squares Problems. SIAM, Philadelphia.

    Google Scholar 

  23. P. Lax and B. Wendroff (1960) Systems of conservation laws. Comm. Pure Appl. Math. 13, 217–237.

    MathSciNet  Google Scholar 

  24. R.L. LeVeque (2002) Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge.

    Google Scholar 

  25. X. Liu, S. Osher, and T. Chan (1994) Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212.

    Article  MathSciNet  Google Scholar 

  26. A. Meister and J. Struckmeier, eds. (2002) Hyperbolic Partial Differential Equations: Theory, Numerics and Applications. Vieweg, Braunschweig.

    Google Scholar 

  27. C.D. Munz and R. Schneider. An arbitrary high order accurate finite volume scheme for the Maxwell equations in two dimensions on unstructured meshes. Forschungszentrum Karlsruhe, Germany, unpublished report.

    Google Scholar 

  28. C.F. Ollivier-Gooch (1997) Quasi-ENO schemes for unstructured meshes based on unlimited data-dependent least-squares reconstruction. J. Comput. Phys. 133, 6–17.

    Article  MATH  MathSciNet  Google Scholar 

  29. T.J. Ruuth and R.J. Spiteri (2002) Two barriers on strong-stability-preserving time discretization methods. J. Sci. Comput. 17, 211–220.

    Article  MathSciNet  Google Scholar 

  30. T. Schwartzkopff, C.D. Munz, and E.F. Toro (2002) ADER: A high-order approach for linear hyperbolic systems in 2D. J. Sci. Comput. 17, 231–240.

    Article  MathSciNet  Google Scholar 

  31. T. Schwartzkopff, C.D. Munz, E.F. Toro, and R.C. Millington (2001) The ADER approach in 2D. Discrete Modelling and Discrete Algorithms on Continuum Mechanics, T. Sonar and I. Thomas (eds.), Logos, Berlin, 207–216.

    Google Scholar 

  32. C.W. Shu (1988) Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084.

    Article  MATH  MathSciNet  Google Scholar 

  33. C.W. Shu and S. Osher (1988) Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471.

    Article  MathSciNet  Google Scholar 

  34. T. Sonar (1997) On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: polynomial recovery, accuracy and stencil selection. Comput. Methods Appl. Mech. Engrg. 140, 157–181.

    Article  MATH  MathSciNet  Google Scholar 

  35. Y. Takakura and E.F. Toro (2002) Arbitrarily accurate non-oscillatory schemes for a nonlinear conservation law. Computational Fluid Dynamics Journal 11(1), 7–18.

    Google Scholar 

  36. V.A. Titarev and E.F. Toro (2002) ADER: Arbitrary high order Godunov approach. J. Sci. Comput. 17, 609–618.

    Article  MathSciNet  Google Scholar 

  37. E.F. Toro (1999) Riemann Solvers and Numerical Methods for Fluid Dynamics. 2nd edition, Springer.

    Google Scholar 

  38. E.F. Toro, R.C. Millington, and L.A.M. Nejad (2001) Towards very high order Godunov schemes. Godunov Methods; Theory and Applications, E.F. Toro (ed.), Kluwer Academic Plenum Publishers, 907–940.

    Google Scholar 

  39. E.F. Toro and V.A. Titarev (2001) Very high order Godunov-type schemes for nonlinear scalar conservation laws. European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Computational Fluid Dynamics Conference, Swansea, Wales, September 2001.

    Google Scholar 

  40. E.F. Toro and V.A. Titarev (2003) TVD fluxes for the high-order ADER schemes (2003) Preprint, Laboratory of Applied Mathematics, University of Trento, Italy.

    Google Scholar 

  41. E.F. Toro and V.A. Titarev (2002) Solution of the generalized Riemann problem for advection-reaction equations. Proc. R. Soc. Lond. A, 271–281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Käser, M., Iske, A. (2005). Reservoir Flow Simulation by Adaptive ADER Schemes. In: Iske, A., Randen, T. (eds) Mathematical Methods and Modelling in Hydrocarbon Exploration and Production. Mathematics in Industry, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26493-0_11

Download citation

Publish with us

Policies and ethics