Advertisement

Methods of Density-Independent Moisture Measurement

  • Klaus Kupfer

Keywords

Phase Shift Moisture Content Moisture Measurement Horn Antenna Microwave Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kupfer K (1990) Feuchtemessung an Zuschlagstoffen für die Betonherstellung unter Verwendung der Mikrowellenmeßtechnik. Hochschule für Architektur und Bauwesen Weimar / BaustofiVerfahrenstechnik, Diss. AGoogle Scholar
  2. 2.
    Kalinski J (1979) “Einige Probleme der industriellen Feuchtemessung mit Mikrowellen”. TIZ (Fachberichte) 103 pp. 145–153Google Scholar
  3. 3.
    Kalinski J, Rakowski J (1984) “On-Line Measurements of Material Quality by Microwaves”.-Proc. of the Int. Symp. on Metrology for Quality Control in Prod, pp 94–99, TokyoGoogle Scholar
  4. 4.
    Kraszewski A (1988) Microwave Monitoring of Moisture Content in Grain — Further Considerations. Journ. of Microwave Power and Electromagnetic Energy, 23(4), p 236Google Scholar
  5. 5.
    Kupfer K (2000) “Radiofrequency and Microwave Moisture Sensing of Building Materials”. Sensors Update Vol. 7, RF&Microwave Sensing of Moist Materials, Food and other Dielectric, Wiley-VCH Verlag Weinheim / New York, Guest Editors: Kupfer, Kraszewski, KnöchelGoogle Scholar
  6. 6.
    Kupfer K et. al. (1997) “Genauigkeitsanforderungen an Feuchtemeßsysteme bei der Betonherstellung”. Technisches Messen 64, pp 433–439Google Scholar
  7. 7.
    Kay-Ray (1982) “Accu-sense” on-line noncontacting moisture measurement system. Data sheet USAGoogle Scholar
  8. 8.
    Klein A (1981) “Comparison of Attenuation and Phase Measurement”. Journ. of Microwave Power 16, pp 289–304Google Scholar
  9. 9.
    Berthold (1989) “MICROMOIST LB 354” Manual Bad WildbadGoogle Scholar
  10. 10.
    Kupfer K (2000) “Microwave Moisture Measurement Systems and their Applications”. Sensors Update Vol. 7, RF&Microwave Sensing of Moist Materials, Food and other Dielectric, Wiley-VCH Verlag Weinheim / New York, Guest Editors: Kupfer, Kraszewski, KnöchelGoogle Scholar
  11. 11.
    Chope RH (1960) Method and apparatus for measuring multiple properties of material by applying electric fields at multiple frequencies and combining detection signals. US Patent 3, 155, 898, 3 November 1964Google Scholar
  12. 12.
    Stuchly S, Kraszewski A (1965) “Method for the determination of water content in solids, liquids and gases by means of microwaves and arrangement for application of this method”, Polish Patent, 51, 731Google Scholar
  13. 13.
    Kraszewski A, Kulinski S (1976) “An improved Microwave Method of Moisture Content Measurement and Control”. IEEE Trans, on Ind. Electr. and Contr. Instr. IECI 23, pp 364–370Google Scholar
  14. 14.
    Mlodzka-Stybel A (1990) “Practical Verification of the Microwave Two-Parameter Method of Moisture Monitoring in Grain in Harvest Time”. Proc. of the 2 th Europ. Microwave Conference, pp 1679–1682 BudapestGoogle Scholar
  15. 15.
    Stuchly S, Hamid M (1972) “State of the art in microwave sensors for measuring non-electrical quantities”. Int. Journ. Electronics 33, pp 617–633Google Scholar
  16. 16.
    Meyer W, Schilz W (1980) “A microwave method for density independent determination of the moisture content of solids”. J. Phys. D: Appl. Phys., 13, pp 1823–1830CrossRefGoogle Scholar
  17. 17.
    Meyer W, Schilz W (1981) Feasibility study of density-independent moisture measurements with microwaves. IEEE Trans. On MTT 29; 7 pp 732–739CrossRefGoogle Scholar
  18. 18.
    Meyer W, Schilz W (1979) Verfahren zur Messung der relativen Feuchte eines Messgutes mit Hilfe von Mikrowellen im GHz-Bereich. DE 2928487 Anmeldetag 14. 7. 79Google Scholar
  19. 19.
    Jacobsen R, Meyer W, Schrage B (1980) “Density independent moisture meter at X-band”. Proc. of the 10 th EuMc, pp 216–220, WarschauGoogle Scholar
  20. 20.
    Meyer W, Schilz W (1982) “High Frequency Dielectric Data on Selected Moist Materials”. Journ. of Microwave Power 17, pp 67–77Google Scholar
  21. 21.
    Kent M, Meyer W (1982) A density-independent microwave moisture meter for heterogeneous foodstuffs. J. Food Eng. 1, pp 31–42CrossRefGoogle Scholar
  22. 22.
    Nelson SO (1983) “Observations on the Density Dependence of Dielectric Properties of Particulate Materials”. Journ. of Microwave Power 18, pp 143–152Google Scholar
  23. 23.
    Vainikainen PV, Nyfors EG, Fischer MT Radiowave sensor for measuring the dielectric properties of dielectric sheets: Application to veneer moisture content and mass per unit area measurement. IEEE Trans.Instr.Meas. IM-36(4), pp 1036–1039Google Scholar
  24. 24.
    Kent M, Kress-Rogers E (1986) “Microwave moisture and density measurements in particulate solids”. Trans. Inst. MC 8, pp 161–168CrossRefGoogle Scholar
  25. 25.
    Kress-Rogers E, Kent M (1987) Microwave Measurement of Powder Moisture and Density. Journ. of Food Eng. 6, pp. 345–376CrossRefGoogle Scholar
  26. 26.
    Meyer W, Schilz W (1982) “Microwave measurement of moisture content in process material Philips techn. Review 40, pp 112–119Google Scholar
  27. 27.
    Hoppe W, Meyer W, Schilz W (1981) Vorrichtung zur Feuchtemessung mit Hilfe von Mikrowellen. DE 2942971 Al Anmeldung 24. 10. 81Google Scholar
  28. 28.
    Herrmann R (1997) “Mikrowellen-Feuchtemessung mit Resonatoren und ihre Anwendungen”. Materialfeuchtemessung, Renningen-Malmsheim expert-Verlag, Editor K. KupferGoogle Scholar
  29. 29.
    Zoerb GC, Moore GA, Burrow RP: Continuous measurement of grain moisture content during harvest. Trans. Of the ASAE 36(1), pp 5–9Google Scholar
  30. 30.
    Powell SD et.al. (1988) “Use of a Density-Independent Function and Microwave Measurement System for Grain Moisture Measurement”. Trans, of the ASAE 31, pp 1875–1881Google Scholar
  31. 31.
    Nelson SO (1984) “Density dependence of the dielectric properties of wheat and whole-wheat flour”. Journal of Microwave Power 19, pp 55–64Google Scholar
  32. 32.
    Lawrence KC, Nelson SO (1993) “Radio-frequency density independent moisture determination in wheat”. Trans. Of the ASAE 36, pp 477–483Google Scholar
  33. 33.
    Lawrence KC (1997) “Density-independent multiple-frequency technique for measuring moisture content in grains with a radio-frequency permittivity sensor”. PhD. Dissertation, University of Georgia, Athens, GeorgiaGoogle Scholar
  34. 34.
    Lawrence KC, Windham WR, Nelson SO: “Wheat Moisture Determination By 1-to 110 MHz Sweptfrequency Admittance Measurements”. Trans, of the ASAE 41, pp 135–142Google Scholar
  35. 35.
    Berbert PA, Stenning BC (1996) Analysis of Density-independent Equations for Determination of Moisture Content of Wheat in the Radiofrequency Range. J. agric. Engng. Res., Vol. 65, pp 275–286CrossRefGoogle Scholar
  36. 36.
    Berbert PA, Stenning BC (1996) On-line Moisture Content Measurement of Wheat. J. agric. Engng. Res., Vol. 65, pp 287–296CrossRefGoogle Scholar
  37. 37.
    Lawrence KC, Nelson SO (2000) Radifrequency sensing of moisture content in cereal grains. Sensors Update Vol. 7, RF&Microwave Sensing of Moist Materials, Food and other Dielectric, Wiley-VCH Verlag Weinheim / New York, Guest Editors: Kupfer, Kraszewski, Knöchel pp 377–390Google Scholar
  38. 38.
    Heck B, Hohenstein N, Schröder D (1994) “Verfahren zur dichteunabhängigen kapazitiven On-line-Messung des Wassergehaltes fester Stoffe”. Technisches Messen 61 S 421–428Google Scholar
  39. 39.
    Kupfer K (1996) “Possibilities and Limitations of Density-Independent Moisture Measurement with Microwaves” Chapter 21 pp 313–327. Microwave Aquametry”; New York, IEEE Press Book-Series, Editor A. KraszewskiGoogle Scholar
  40. 40.
    Kent M (1989) Application of two-variable microwave techniques to composition analysis problems. Trans Inst MC Vol. 11 No. 2; April–June, pp 58–62Google Scholar
  41. 41.
    Kent M (2000) Simulteaneous determination of Composition and Other Materials by Using Microwave Moisture Sensors. Sensors Update Vol. 7, RF&Microwave Sensing of Moist Materials, Food and other Dielectric, Wiley-VCH Verlag Weinheim / New York, Guest Editors: Kupfer, Kraszewski, KnöchelGoogle Scholar
  42. 42.
    Kupfer K (1999) Methods and Devices for Density-independent Moisture Measurements. Proc. on 3. Workshop on Electromagnetic Wave Interaction with Water and Moist Substances; Athens GA April, pp 11–19Google Scholar
  43. 43.
    Stang G Verfahren und Vorrichtung zur Messung der Dielektrizitätskonstante von Probenmaterialien. Patentschrift DE 43 42 505 C1Google Scholar
  44. 44.
    Datasheets Microwave resonator sensor. Keller GmbH Ibbenbühren-LangenbeckGoogle Scholar
  45. 45.
    Menke F, Knöchel R (1996) New Density-IndependentMoisture Measurement Methods using Frequency swept Microwave Transmission. IEEE MTT-S Digest 1996 Vol. 3, pp 1415–1418CrossRefGoogle Scholar
  46. 46.
    Menke F (1998) Zerstörungsfreie Feuchtemeßverfahren mit Mikrowellen Fortschrittsberichte VDI Reihe 8 Meß-, Steuerungs-und Regelungstechnik Nr. 690; VDI Verlag DüsseldorfGoogle Scholar
  47. 47.
    Zhang Y, Okamura S (1999) “New Density-independent Moisture Measurement Using Microwave Phase Shifts at Two Frequencies”, IEEE Transactions on Instrumentation and Measurement, vol. 48,(6), pp1208–1211.CrossRefGoogle Scholar
  48. 48.
    Zhang Y, Okamura S (2000) “Moisture content measurement for green tea using phase shifts at two microwave frequencies”, Subsurface Sensing technologies and Applications, vol. 1,(4), pp 129–136.CrossRefGoogle Scholar
  49. 49.
    Kraszewski AW, Nelson SO (1991) Density-independent moisture determination in wheat by microwave measurement. Trans, of the ASAE Vol. 34, pp 1776–1783Google Scholar
  50. 50.
    Kupfer K, Klein A (1992) Experiments on the Suitability of Microwave Measuring Techniques for Moisture Measurement in Calcium Silicate Brick Production. Mineral processing 33(4), pp. 213–221Google Scholar
  51. 51.
    Bartley Ph, Nelson SO, McClendon RW, Trabelsi S (1998) “Determining Moisture Content of Wheat with an Artificial Neural Network from Microwave Transmission Measurements”. Trans, on Instr. and Meas. Vol. 47, pp 123–126CrossRefGoogle Scholar
  52. 52.
    Trabelsi S, Kraszewski AW, Nelson SO (1998) “A Microwave Method for On-line Determination of Bulk Density and Moisture Content of Particulate Materials. Trans, on Instr. and Meas. Vol. 47, pp 127–132CrossRefGoogle Scholar
  53. 53.
    Nelsson SO, Trabelsi S, Kraszewski AW (1998) “Advances in Sensing Grain Moisture Content by Microwave Measurements”. Trans, of the ASAE Vol. 41, pp 483–487Google Scholar
  54. 54.
    Kraszewski AW, Trabelsi S, Nelson SO (1998) “Comparison of Density-independent Expressions for Moisture Content Determination in Wheat at Microwave Frequencies”. J. agric. Engng Res. 71, pp 227–237CrossRefGoogle Scholar
  55. 55.
    Trabelsi S, Nelson SO (1998) “Density-independent functions for on-line microwave moist meters: a general discussion” Meas. Sci. Technol 9, pp 570–578CrossRefGoogle Scholar
  56. 56.
    King R (2000) On-line industrial Applications of Microwave Moisture Sensors. Sensors Update Vol. 7, RF&Microwave Sensing of Moist Materials, Food and other Dielectric, Wiley-VCH Verlag Weinheim / New York, Guest Editors: Kupfer, Kraszewski, Knöchel pp 109–170Google Scholar
  57. 57.
    Volgyi F (2000) Monitoring of Particleboard Production using Microwave Sensors. Sensors Update Vol. 7, RF&Microwave Sensing of Moist Materials, Food and other Dielectric, Wiley-VCH Verlag Weinheim / New York, Guest Editors: Kupfer, Kraszewski, Knöchel pp 249–274Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Klaus Kupfer
    • 1
  1. 1.Materialforschungs- und -prüfanstalt an der Bauhaus-Universität Weimar Amalienstraße 13WeimarGermany

Personalised recommendations