Model Systems for Materials with High Dielectric Losses in Aquametry

  • Ari Sihvola


Enhancement Effect Dielectric Response Interfacial Polarization Aquatic Mixture Spherical Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolfram S (2002) A new kind of science, Wolfram Media, Inc., Champaign, ILGoogle Scholar
  2. 2.
    Bergman DJ (1978) The dielectric constant of a composite material — a problem in classical physics. Phys Rep C 43:377–407MathSciNetGoogle Scholar
  3. 3.
    Milton GW (2002) The theory of composites, Cambridge University PressGoogle Scholar
  4. 4.
    Sihvola A (1999) Electromagnetic mixing formulas and applications, IEE Publishing, Electromagnetic Wave Series 47, LondonGoogle Scholar
  5. 5.
    Neelakanta PS (1995) Handbook of electromagnetic materials, CRC, Boca Raton, FloridaGoogle Scholar
  6. 6.
    Maxwell Garnett JC (1904) Colours in metal glasses and in metal films. Trans Royal Society (London) CCIII:385–42Google Scholar
  7. 7.
    Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials, J Appl Physics 33(10):3125–3131CrossRefGoogle Scholar
  8. 8.
    Bruggeman DAG (1935) Berechnung verschiedener physikalischen Konstanten von heterogenen Substanzen, I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der Physik (Ser. 5) 24:636–679Google Scholar
  9. 9.
    Elliott RJ, Krumhansl JA, Leath PL (1974) The theory and properties of randomly disordered crystals and related physical systems. Revs Modern Physics, 46(3):465–543MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sihvola A (1989) Self-consistency aspects of dielectric mixing theories. IEEE Trans. Geoscience Remote Sensing 27(4):403–415CrossRefGoogle Scholar
  11. 11.
    Foster KR, Schwan HP (1989) Dielectric properties of tissues and biological materials: a critical review. CRC Critical Revs in Biomedical Engineering 17(1):25–104Google Scholar
  12. 12.
    Wagner KW (1914) Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen. Arch Elektrotechnik, 2(9):371–387CrossRefGoogle Scholar
  13. 13.
    Nyfors E, Vainikainen P (1989) Industrial microwave sensors, Artech H0ouse, Norwood, Mass.Google Scholar
  14. 14.
    Landauer R (1978) Electrical conductivity in inhomogeneous media. In: Garland JC, Tanner DB (Eds.) Electrical transport and optical properties of inhomogeneous media, American Institute of Physics, Conference Proc., 40:2–45.Google Scholar
  15. 15.
    Taylor LS (1965) Dielectric properties of mixtures. IEEE Trans. Antennas Propagation 13(6):943–947CrossRefGoogle Scholar
  16. 16.
    Tinga WR, Voss WAG, Blossey DF (1973) Generalized approach to multiphase dielectric mixture theory. J Appl Physics 44(9):3897–3902CrossRefGoogle Scholar
  17. 17.
    Sihvola A, Saastamoinen S, Heiska K (1994) Mixing rules and percolation. Remote Sensing Revs 9:39–50Google Scholar
  18. 18.
    Sihvola, A (2002) How strict are theoretical bounds for dielectric properties of mixtures? IEEE Trans Geoscience Remote Sensing 40(4):880–886CrossRefGoogle Scholar
  19. 19.
    Banhart J, Weaire D (2002) On the road again: metal foams find favor, Physics Today, July 2002, 37–42Google Scholar
  20. 20.
    Sihvola, A (2002) Electromagnetic emergence in metamaterials. Deconstruction of terminology of complex media. In: Zouhdi S, Sihvola A, Arsalane M (Eds.) Advances in electromagnetics of complex media and metamaterials, Kluwer, Dordrecht, 3–17Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ari Sihvola
    • 1
  1. 1.Electromagnetics LaboratoryHelsinki University of TechnologyFinland

Personalised recommendations