Microwave Dielectric Properties of Hevea Rubber Latex, Oil Palm Fruit and Timber and Their Application for Quality Assessment

  • Kaida bin Khalid
  • Jumiah Hassan
  • Zulkifly Abbas
  • Mohd Hamami


Dielectric Property Moisture Content Wood Density Microwave Dielectric Property Decayed Wood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Rubber Study Group (2002) Rubber Statistical Bulletin, Wembley, UKGoogle Scholar
  2. 2.
    Chin HC (1979) RRIM training manual on analytical chemistry. Research Institute Malaysia, Kuala Lumpur p67Google Scholar
  3. 3.
    Cook AS, Sekhar BC (1953) Fraction brown Hevea brasilinsis latex centrifuged at 59,000g. J Rubber Inst Malaya 14:163Google Scholar
  4. 4.
    Oil World Annual (2001) World production of 17 oils and fats, HamburgGoogle Scholar
  5. 5.
    Thomas RL, Phang S, Mok CK, Chan KW, Easau PT, Ng SC (1971) Fruit ripening in the oil palm Elaies guineensis. Ann Box 35:1219–1225Google Scholar
  6. 6.
    Year book of statistics (2001) Statistics Department of Malaysia, Kuala LumpurGoogle Scholar
  7. 7.
    Khalid KB, Hassan J, Daud WM (1997) Dielectric phenomena in hevea rubber latex and its applications. In: Proceedings of the 5th international conference on the properties and applications of dielectric materials, Seoul, pp 25–30Google Scholar
  8. 8.
    Khalid KB, Daud WM (1992) Dielectric properties of natural rubber latex at frequencies from 200 MHz to 2500 MHz. J Natl Rubber Res 7(4): 281–289Google Scholar
  9. 9.
    Khalid KB, Hassan J, Daud WM (1996) The effect of ionic conductivity and dipole orientation on the dielectric loss of the hevea rubber latex. In: Proceedings of IEEE-MTTS international microwave symposium, San Francisco, pp 23–26Google Scholar
  10. 10.
    Khalid KB, Hassan J, Daud WM (1994) Dielectric properties of hevea latex at various moisture content. J Natl Rubber Res 9(3): 172–189Google Scholar
  11. 11.
    Suresh N, Calloghan JC, Creelman AE (1967) Microwave measurement of the degree of binding of water absorbed in soils. J Microwave Power 24:129Google Scholar
  12. 12.
    Bruggeman DAG (1935) Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen. Ann Phys Lpz 24(5): 636Google Scholar
  13. 13.
    Kraszewski A, Kulinski S, Matuszewski M (1976) Dielectric properties and model of biphase water suspension at 9.4 GHz. J Appl Phys 47:1275CrossRefGoogle Scholar
  14. 14.
    Boned C, Peyrelasse J (1983) Some comments on the complex permittivity of ellipsoids dispersed in continuum media. J Phys D: Appl Phys 16: 1777CrossRefGoogle Scholar
  15. 15.
    Hartley CWS (1977) The Oil Palm, 2nd Edition Longman Group Limited, London pp 222–223Google Scholar
  16. 16.
    Khalid KB, Zakaria Z, Daud WM (1996) Variation of dielectric properties of oil palm mesocarp with moisture content and fruit maturity at microwave frequencies. Elaeis 8(2): 83–91Google Scholar
  17. 17.
    Nelson SO, Forbus WR, Lawrence KC (1995) Assessment of microwave permittivity for sensing peach maturity. Trans ASAE 3812:579–585Google Scholar
  18. 18.
    Peysken E, de Poureq M, Stevens M, Schalck J (1984) Dielectric properties of softwood species at microwaves frequencies. Wood Sci Technol 18:267–280CrossRefGoogle Scholar
  19. 19.
    Nyfors E, Vainikainen P (1989) Industrial microwave sensors. Artech House, Norwood, MA, pp 216–224Google Scholar
  20. 20.
    Khalid K, Sahri MH, Cheong NK, Fuad SA (2001) Microwave reflection technique for determination of density, moisture and stage of decay in wood. In: Kupfer K (ed) Proceedings of the 4th international conference on electromagnetic wave interaction with water and moist substances, Weimar, pp 79–87Google Scholar
  21. 21.
    Khalid K, Sahri MH, Cheong NK, Fuad SA (1999) Microwave dielectric properties of wooden cross-arms. Proc SPIE, pp 146–156Google Scholar
  22. 22.
    Warner FL (1977) Microwave attenuation measurement, IEE monograph series no 9. Peter Peregrinus, Stevenage, Herts, pp 272–277Google Scholar
  23. 23.
    Khalid KB (1994) Portable microwave moisture meter for lossy liquids. In: Proceedings of the Asia Pacific microwave conference, Tokyo, pp 477–481Google Scholar
  24. 24.
    Khalid KB, Mohd R (2002) Development of microwave moisture sensors for hevea rubber latex and its application for latex dipping industries. In: Proceedings of the 4th ISHM, Taipei, pp 241–247Google Scholar
  25. 25.
    Khalid KB, Abbas Z, (1992) A microstrip sensor for determination of harvesting time for oil palm fruits (Genera: Elaeis guineensis). J Microwave Power EM Energy 27(1):3–10Google Scholar
  26. 26.
    Khalid KB, Abbas Z (1996) Development of microstrip sensor for oil palm fruit. In: Kraszweski A (ed) Microwave aquametry, IEEE Press book series, New York, pp 239–248Google Scholar
  27. 27.
    Khalid KB, Hua TL (1998) Development of conductor-backed coplanar waveguide moisture sensor for oil palm fruit. Meas Sci Technol 9:1191–1195CrossRefGoogle Scholar
  28. 28.
    Khalid K, Sahri MH, Cheong NK, Fuad SA (2000) Microwave reflection sensor for determination of decay in wooden cross-arms. In: Proceedings of the 6th conference on properties and applications of dielectric materials, Xian, pp 595–598Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kaida bin Khalid
    • 1
  • Jumiah Hassan
    • 1
  • Zulkifly Abbas
    • 1
  • Mohd Hamami
    • 2
  1. 1.Physics DepartmentUniv. Putra MalaysiaSerdang SelangorMalaysia
  2. 2.Faculty of ForestryUniv. Putra MalaysiaSerdang SelangorMalaysia

Personalised recommendations