Permittivity Measurements and Agricultural Applications

  • Stuart O. Nelson
  • Samir Trabelsi


Dielectric Property Microwave Heating Fresh Fruit Microwave Dielectric Property Agricultural Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anthony WS (1983) Vacuum microwave drying of cotton: effect on cottonseed. Trans ASAE 26:275–278Google Scholar
  2. 2.
    ASAE (1966) ASAE Data: ASAE D293. Dielectric properties of grain and seeds Agricultural Engineers Yearbook. American Society of Agricultural Engineers, St. Joseph, MIGoogle Scholar
  3. 3.
    ASAE (2000) ASAE S352.2 Moisture measurement-Unground grain and seeds ASAE Standards 2000. American Society of Agricultural Engineers, St. Joseph, MI, 563 ppGoogle Scholar
  4. 4.
    ASAE (2002) ASAE D293.2 Dielectric properties of grain and seed. In: ASAE Standards 2002. American Society of Agricultural Engineers, St. Joseph, MI, pp 575–584Google Scholar
  5. 5.
    Ban T, Suzuki M (1977) Studies on electrical detection of grain moisture content in artificial drying (Japanese) Technical Report No. 11, Institute of Agricultural Machinery, Omiya, JapanGoogle Scholar
  6. 6.
    Beerwinkle KR, McCune WE (1969) Factors affecting eversion of sorghum grain using energy in 2450 MHz range. Trans ASAE 12:295–297Google Scholar
  7. 7.
    Benz G (1975) Entomologishe Untersuchungen zur Entwesung von Getreide mittels Hochfrequenz. Alimenta 14:11–15Google Scholar
  8. 8.
    Berliner E, Ruter R (1929) Über Feuchtigkeitsbestimmungen in Weizen und Roggen mit dem D K-Apparat. Z Gesamt Mühlenwes 6:1–4Google Scholar
  9. 9.
    Borchers R, Manage LD, Nelson SO, Stetson LE (1972) Rapid improvement in nutritional quality of soybeans by dielectric heating. J Food Sci 37:333–334Google Scholar
  10. 10.
    Briggs LJ (1908) An electrical resistance method for the rapid determination of the moisture content of grain. Bureau of Plant Industry Circular No. 20, Washington, DCGoogle Scholar
  11. 11.
    Chen XJ, Bau HM, Giannangeli F, Debry G (1986) Evaluation de l’influence de la cuisson par les micro-ondes sur les proprietes physico-chimiques et nutritionnelles de la farine entiere de soja. Sci Aliment 6:257–272Google Scholar
  12. 12.
    Davis FS, Wayland JR, Merkel MG (1971) Ultrahigh-frequency electromagnetic fields for weed control: phytotoxicity and selectivity. Science 173:535–537Google Scholar
  13. 13.
    Doty NC, Baker CW (1977) Microwave conditioning of durum wheat. 1. Effects of wide power range on semolina and spaghetti quality. J Agric Food Chem 25:815–819CrossRefGoogle Scholar
  14. 14.
    Fanslow GE, Gittins LL, Wedin WF, Martin NP (1971) Power absorption and drying patterns of forage crops dried with microwave power. J Microwave Power 6:229–235Google Scholar
  15. 15.
    Gardner DR, Butler JL (1981) Preparing crops for storage with a microwave vacuum (MIVAC) drying system. Paper presented at Second International Symposium on Drying. Montreal, CanadaGoogle Scholar
  16. 16.
    Hafez US, Mohamed AI, Hewedy FM, Singh G (1985) Effects of microwave heating on solubility, digestibility and metabolism of soy protein. J Food Sci 50:415–417Google Scholar
  17. 17.
    Hall GE (1963) Preliminary investigation of shelled corn drying with high-frequency energy. Ohio Agricultural Experiment Station, Wooster, OHGoogle Scholar
  18. 18.
    Halverson SL, Burkholder WE, Bigelow TS, Nordheim EV, Misenheimer ME (1996) High-power microwave radiation as an alternative insect control method for stored products. J Econ Entomol 89:1638–1648Google Scholar
  19. 19.
    Hartshorn L, Ward WH (1936) The measurement of permittivity and power factor of dielectrics at frequencies from 104 to 108 c. p. s. J IEE 79:597–609Google Scholar
  20. 20.
    Jones RN, Bussey HE, Little WE, Metzker RF (1978) Electrical characteristics of corn, wheat, and soya in the 1-200 MHz range. NBSIR 78-897 National Bureau of Standards, Boulder, CO, 67 ppGoogle Scholar
  21. 21.
    Jorgensen JL, Edison AR, Nelson SO, Stetson LE (1970) A bridge method for dielectric measurements of grain and seed in the 50 to 250MHz range. Trans ASAE 13:18–20, 24Google Scholar
  22. 22.
    Kent M (1987) Electrical and Dielectric Properties of Food Materials. Science and Technology Publishers, Hornchurch, Essex, EnglandGoogle Scholar
  23. 23.
    Kent M, Kress-Rogers E (1986) Microwave moisture and density measurements in particulate solids. Trans Instrum, Meas Control 8:161–168CrossRefGoogle Scholar
  24. 24.
    Knipper NV (1959) Use of high-frequency currents for grain drying. J Agric Eng Res 4:349–360Google Scholar
  25. 25.
    Kraszewski AW (1988) Microwave monitoring of moisture content in grain further considerations. J Microwave Power 23:236–246Google Scholar
  26. 26.
    Kraszewski AW, Kulinski S (1976) An improved microwave method of moisture content measurement and control. IEEE Trans Ind Electron Control Instrum 23:364–370Google Scholar
  27. 27.
    Kraszewski AW, Trabelsi S, Nelson SO (1996) Wheat permittivity measurements in free space. J Microwave Power Electromag Energy 31:135–141Google Scholar
  28. 28.
    Kraszewski AW, Trabelsi S, Nelson SO (1998) Comparison of density-independent expressions for moisture content determination in wheat at microwave frequencies. J Agric Eng Res 71:227–237CrossRefGoogle Scholar
  29. 29.
    Kraszewski AW, Trabelsi S, Nelson SO (1999) Temperature-compensated and density-independent moisture content determination in shelled maize by microwave measurements. J Agric Eng Res 72:27–35CrossRefGoogle Scholar
  30. 30.
    Kress-Rogers E, Kent M (1987) Microwave measurement of powder moisture and density. J Food Eng 6:345–376CrossRefGoogle Scholar
  31. 31.
    Meyer W, Schilz W (1980) A microwave method for density independent determination of the moisture content of solids. J Phys D: Appl Phys 13:1823–1830CrossRefGoogle Scholar
  32. 32.
    Meyer W, Schilz W (1981) Feasibility study of density-independent moisture measurement with microwaves. IEEE Trans Microwave Theory Tech 29:732–739CrossRefGoogle Scholar
  33. 33.
    Mishenko AA, Malinin OA, Rashkovan VM, Basteev AV, Basyma LA, Mazalov YP, Kutovoy VA (2000) Complex high-frequency technology for protection of grain against pests. J Microwave Power Electrom Energy 35:179–184Google Scholar
  34. 34.
    Nelson SO (1965) Dielectric properties of grain and seed in the 1 to 50 MC range. Transactions of the ASAE 8:38–48Google Scholar
  35. 35.
    Nelson SO (1965) Electromagnetic Radiation Effects on Seeds. Conf Proc-Electromagnetic Radiation in Agriculture:60–63Google Scholar
  36. 36.
    Nelson SO (1967) Electromagnetic energy. In: Kilgore WW, Doutt RL (eds) Pest Control-Biological, Physical and Selected Chemical Methods. Academic Press, New York and LondonGoogle Scholar
  37. 37.
    Nelson SO (1972) A system for measuring dielectric properties at frequencies from 8.2 to 12.4 GHz. Trans ASAE 15:1094–1098Google Scholar
  38. 38.
    Nelson SO (1973) Electrical properties of agricultural products-a critical review. Trans ASAE 16:384–400Google Scholar
  39. 39.
    Nelson SO (1973) Insect-control studies with microwave and other radiofrequency energy. Bull Entomol Soc Am 19:157–163Google Scholar
  40. 40.
    Nelson SO (1973) Microwave dielectric properties of grain and seed. Trans ASAE 16:902–905Google Scholar
  41. 41.
    Nelson SO (1976) Use of microwave and lower frequency RF energy for improving alfalfa seed germination. J Microwave Power 11:271–277Google Scholar
  42. 42.
    Nelson SO (1977) Use of electrical properties for grain moisture measurement. J Microwave Power 12:67–72Google Scholar
  43. 43.
    Nelson SO (1980) Microwave dielectric properties of fresh fruits and vegetables. Trans ASAE 23:1314–1317Google Scholar
  44. 44.
    Nelson SO (1981) Effects of 42 and 2450 MHz dielectric heating on nutrition-related properties of soybeans. J Microwave Power 16:313–318Google Scholar
  45. 45.
    Nelson SO (1981) Review of factors influencing the dielectric properties of cereal grains. Cereal Chem 58:487–492Google Scholar
  46. 46.
    Nelson SO (1982) Factors affecting the dielectric properties of grain. Trans ASAE 25:1045–1049, 1056Google Scholar
  47. 47.
    Nelson SO (1983) Dielectric properties of some fresh fruits and vegetables at frequencies of 2.45 to 22 GHz. Trans ASAE 26:613–616Google Scholar
  48. 48.
    Nelson SO (1991) Dielectric properties of agricultural products-measurements and applications. IEEE Trans Elec Insul 26:845–869CrossRefGoogle Scholar
  49. 49.
    Nelson SO (1996) A review and assessment of microwave energy for soil treatment to control pests. Trans ASAE 39:281–289Google Scholar
  50. 50.
    Nelson SO (1996) Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Trans ASAE 39:1475–1484Google Scholar
  51. 51.
    Nelson SO (2003) Frequency-and temperature-dependent permittivities of fresh fruits and vegetables from 0.01 to 1.8 GHz. Trans ASAE 46:567–574.Google Scholar
  52. 52.
    Nelson SO, Bartley PG, Jr., Lawrence KC (1997) Measuring RF and microwave permittivities of adult rice weevils. IEEE Trans Instrum Meas 46:941–946CrossRefGoogle Scholar
  53. 53.
    Nelson SO, Bartley PG, Jr., Lawrence KC (1998) RF and microwave dielectric properties of stored-grain insects and their implications for potential insect control. Trans ASAE 41:685–692Google Scholar
  54. 54.
    Nelson SO, Charity LF (1972) Frequency dependence of energy absorption by insects and grain in electric fields. Trans ASAE 15:1099–1102Google Scholar
  55. 55.
    Nelson SO, Datta AK (2001) Dielectric properties of food materials and electric field interactions. In: Datta AK, Anantheswaran RC (eds) Handbook of Microwave Technology for Food Applications. Marcel Dekker, New YorkGoogle Scholar
  56. 56.
    Nelson SO, Forbus WR, Jr., Lawrence KC (1994) Microwave permittivities of fresh fruits and vegetables from 0.2 to 20 GHz. Trans ASAE 37:181–189Google Scholar
  57. 57.
    Nelson SO, Forbus WR, Jr., Lawrence KC (1994) Permittivities of fresh fruits and vegetables at 0.2 to 20 GHz. J Microwave Power Electromag Energy 29:81–93Google Scholar
  58. 58.
    Nelson SO, Forbus WR, Jr., Lawrence KC (1995) Assessment of microwave permittivity for sensing peach maturity. Trans ASAE 38:579–585Google Scholar
  59. 59.
    Nelson SO, Lu C-Y, Beuchat LR, Harrison MA (2003) Radio-frequency heating of alfalfa seed for reducing human pathogens. Trans ASAE 45:1937–1942.Google Scholar
  60. 60.
    Nelson SO, Nutile GE, Stetson LE (1970) Effects of radiofrequency electrical treatment on germination of vegetable seeds. J Am Soc Hortic Sci 95:359–366Google Scholar
  61. 61.
    Nelson SO, Senter SD, Forbus WR, Jr. (1985) Dielectric and steam heating treatments for quality maintenance in stored pecans. J Microwave Power 20:71–74Google Scholar
  62. 62.
    Nelson SO, Soderholm LH, Yung FD (1953) Determining the dielectric properties of grain. Agric Eng 34:608–610Google Scholar
  63. 63.
    Nelson SO, Stetson LE (1974) Comparative effectiveness of 39 and 2450 MHz electric fields for control of rice weevils in wheat. J Econ Entomol 67:592–595Google Scholar
  64. 64.
    Nelson SO, Stetson LE (1976) Frequency and moisture dependence of the dielectric properties of hard red winter wheat. J Agric Eng Res 21:181–192CrossRefGoogle Scholar
  65. 65.
    Nelson SO, Stetson LE (1985) Germination responses of selected plant species to RF electrical seed treatment. Trans ASAE 28:2051–2058Google Scholar
  66. 66.
    Nelson SO, Stetson LE, Rhine JJ (1966) Factors influencing effectiveness of radio-frequency electric fields for stored-grain insect control. Trans ASAE 9:809–815Google Scholar
  67. 67.
    Nelson SO, Stetson LE, Schlaphoff CW (1972) Computer program for calculation dielectric properties of low-or high-loss materials from short-circuited waveguide measurements. ARS-NC-4 Agricultural Research Service, US Department of Agriculture, 30 ppGoogle Scholar
  68. 68.
    Nelson SO, Stetson LE, Schlaphoff CW (1974) A general computer program for precise calculation of dielectric properties from short-circuited waveguide measurements. IEEE Trans Instrum Meas 23:455–460CrossRefGoogle Scholar
  69. 69.
    Nelson SO, Whitney WK (1960) Radio-frequency electric fields for stored-grain insect control. Trans ASAE 3:133–137Google Scholar
  70. 70.
    Pour-El A, Nelson SO, Peck EE, Tjiho B (1981) Biological properties of VHF-and microwave-heated soybeans. J Food Sci 46:880–885, 895Google Scholar
  71. 71.
    Roberts S, von Hippel A (1946) A new method for measuring dielectric constant and loss in the range of centimeter waves. J Appl Phys 17:610–616CrossRefGoogle Scholar
  72. 72.
    Stetson LE, Nelson SO (1970) A method for determining dielectric properties of grain and seed in the 200-to 500-MHz Range. Trans ASAE 13:491–495Google Scholar
  73. 73.
    Stetson LE, Ogden RL, Nelson SO (1969) Effects of radiofrequency electric fields on drying and carotene retention of chopped alfalfa. Trans ASAE 12:407–410Google Scholar
  74. 74.
    Thomas AM (1952) Pest control by high-frequency electric fields-critical resume. British Electrical and Allied Industries Research Association, Leatherhead, Surrey, 40 ppGoogle Scholar
  75. 75.
    Tinga WR, Nelson SO (1973) Dielectric properties of materials for microwave processing-tabulated. J Microwave Power 8:23–65Google Scholar
  76. 76.
    Trabelsi S, Kraszewski A, Nelson SO (1997) Simultaneous determination of density and water content of particulate materials by microwave sensors. Electron Lett 33:874–876CrossRefGoogle Scholar
  77. 77.
    Trabelsi S, Kraszewski A, Nelson SO (1998) A microwave method for on-line determination of bulk density and moisture content of particulate materials. IEEE Trans Instrum Meas 47:127–132CrossRefGoogle Scholar
  78. 78.
    Trabelsi S, Kraszewski A, Nelson SO (1998) New density-independent calibration function for microwave sensing of moisture content in particulate materials. IEEE Trans Instrum Meas 47:613–622CrossRefGoogle Scholar
  79. 79.
    Trabelsi S, Kraszewski A, Nelson SO (2001) New calibration technique for microwave moisture sensors. IEEE Trans Instrum Meas 50:877–881CrossRefGoogle Scholar
  80. 80.
    Trabelsi S, Kraszewski AW, Nelson SO (1997) Microwave dielectric properties of shelled yellow-dent field corn. J Microwave Power Electromag Energy 32:188–194Google Scholar
  81. 81.
    Trabelsi S, Kraszewski AW, Nelson SO (2000) Phase-shift ambiguity in microwave dielectric properties measurements. IEEE Trans Instrum Meas 49:56–60CrossRefGoogle Scholar
  82. 82.
    Trabelsi S, Nelson SO (1998) Density-independent functions for on-line microwave moisture meters: a general discussion. Meas Sci Technol 9:570–578CrossRefGoogle Scholar
  83. 83.
    Trabelsi S, Nelson SO (2003) Free-space measurement of dielectric properties of cereal grain and oilseed at microwave frequencies. Meas Sci Techn 14:589–599CrossRefGoogle Scholar
  84. 84.
    Trabelsi S, Nelson SO, Kraszewski AW (2001) Universal calibration for microwave moisture sensors for granular materials. Proc 18. IEEE Conf Instrum and Meas Techn, 1808–1813. Budapest, HungaryGoogle Scholar
  85. 85.
    Tran VN, Stuchly SS, Kraszewski A (1984) Dielectric properties of selected vegetables and fruits. J Microwave Power 19:251–258Google Scholar
  86. 86.
    USDA (1986) Chapter 4. Air-Oven Methods. In: Service FGI (ed) Moisture Handbook. US Department of Agriculture, Washington, DCGoogle Scholar
  87. 87.
    Wangsgard AP, Hazen T (1946) The Q-Meter for dielectric measurements on polyethylene and other plastics at frequencies up to 50 megacycles. Trans Electrochem Soc 90:361–375Google Scholar
  88. 88.
    Wayland JR, Merkle MG, Davis FS, Menges RM, Robinson R (1975) Control of seeds with UHF electromagnetic fields. Weed Res 15:1–5Google Scholar
  89. 89.
    Wesley RA, Lyons DW, Garner TH, Garner WE (1974) Some effects of microwave drying on cottonseed. J Microwave Power 9:329–340Google Scholar
  90. 90.
    Wratten FT (1950) The application of dielectric heat to the processing of rice. M.Sc Thesis, Louisiana State University, Baton RougeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stuart O. Nelson
    • 1
  • Samir Trabelsi
    • 1
  1. 1.U. S. Department of AgricultureAgricultural Research ServiceAthensUSA

Personalised recommendations