Principles of Ultra-Wideband Sensor Electronics

  • Jürgen Sachs


Frequency Response Function Sensor Arrangement Device Under Test Joint Time Strobe Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Federal Communications Commission (2002) FCC 02-48, 14 FebGoogle Scholar
  2. 2.
    Mirabbasi Sh, Martin K (2000) Classical and modern receiver architectures. IEEE Commun Mag Nov: 132–139Google Scholar
  3. 3.
    Stephan R, Loele H (1999) Ansätze zur technischen Realisierung einer Geschwindigkeitsmessung mit einem Breitband-Rausch-Radar. In: Proceedings of the workshop of the German IEEE/AP chapter on short range radars, Technische Universität Ilmenau, July 1999, pp 65–70Google Scholar
  4. 4.
    Narayanan RM, Xu Y, Hoffmeyer PD, Curtis JO (1995) Design and performance of a polarimetric random noise radar for detection of shallow buried targets. Proc SPIE 2496:20–30CrossRefGoogle Scholar
  5. 5.
    Zollinger E (1993) Eigenschaften von Funkübertragungsstrecken in Gebäuden. Ph.D. thesis, ETH no 10064, Swiss Federal Institute of Technology, ZurichGoogle Scholar
  6. 6.
    Barrett TW (2001) History of ultra wideband communications and radar: Part II, UWB radars and sensors. Microwave J FebGoogle Scholar
  7. 7.
    Musch T (2002) A high precision 24 GHz FMCW-radar using a phase-slope signal processing algorithm. In: Proceedings of the 32nd European microwave conference, Milan, vol 3, pp 945–948Google Scholar
  8. 8.
    Heide P, Vossiek M, Nalezinski M, Oréans L, Schubert R, Kunert M (1999) 24 GHz short-range microwave sensors for industrial and vehicular applications. In: Proceedings of the workshop of the German IEEE/AP chapter on short range radars, Technische Universität Ilmenau, July 1999, pp 4–9Google Scholar
  9. 9.
    Sachs J, Peyerl P (1999) A new principle for sensor-array-application. In: Proceedings of 16th IEEE instrumentation and measurement technology conference, IMTC/99, Venice, 24–26 May 1999, pp 1390–1395Google Scholar
  10. 10.
    Rossberg M, Sachs J, Rauschenbach P, Peyerl P, Pressel K, Winkler W, Knoll D (2000) 11 GHz SiGe circuits for ultra wideband radar. In: Bipolar/BiCMOS circuits and technology meeting, BCTM-2000, 25–26 Sept, MinneapolisGoogle Scholar
  11. 11.
    Sachs J, Peyerl P (2001) Integrated network analyser module for microwave moisture sensors. In: Proceedings of fourth international conference on “electromagnetic wave interaction with water and moist substances”, 13–16 May 2001, Weimar, p 165ffGoogle Scholar
  12. 12.
    Sachs J, Peyerl P, Kmec M, Tkac F (2002) Digital ultra-wideband-sensor electronics integrated in SiGe-technology. Proceedings of 32nd European microwave conference, Milan, vol 2, pp 539–542, MilanGoogle Scholar
  13. 13.
    Zetik R, Sachs J (2002) Moisture determination of solid material by means of ultra-wideband radar and time-frequency signal representations. Acta Electron Inf 2(1): 15Google Scholar
  14. 14.
    Zetik R (2000) Dual L-Wigner distribution and applications of time-frequency signal representations in ultra-wideband radar systems. Dissertation, University of Technology in KošiceGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jürgen Sachs
    • 1
  1. 1.Technische Universität IlmenauIlmenauGermany

Personalised recommendations