Sensors for Soil, Substrates, and Concrete Based on the MCM100 Microchip

  • Jos Balendonck
  • Max A. Hilhorst
  • William R. Whalley


Soil Water Content Matric Potential Volumetric Water Content Time Domain Reflectometry Hysteresis Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Debye P (1929) Polar molecules. Rheinhold, New YorkMATHGoogle Scholar
  2. 2.
    Davidson DW, Cole RH (1951) Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J Chem Phys 19:1481–1493Google Scholar
  3. 3.
    Stacheder M, Blume P, Fundinger R, Koehler K, Ruf R (2001) Reliability of Trime-TDR Sensors for moisture determination in pure and contaminated concrete. In: Proceedings of the fourth international conference on electromagnetic wave interactions with water and moist substances, Weimar, 13–16 May 2001, pp 266–273Google Scholar
  4. 4.
    Ferguson JG (1953) Classification of bridge methods of measuring impedances. Bell Syst Tech J 12:452–459Google Scholar
  5. 5.
    Hilhorst MA (1984) A sensor for the determination of the complex permittivity of materials as a measure for the moisture content. In Bergveld P (ed) Sensors & actuators. Kluwer Technical Books, Deventer, pp 79–84Google Scholar
  6. 6.
    Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines, Water Resour Res 16(3):574–582Google Scholar
  7. 7.
    Hilhorst MA, Groenwold J, De Groot JF (1992) Water content measurements in soil and rockwool substrates: dielectric sensors for automatic in situ measurements. In: Sensors in horticulture, Acta Hortic 304:209–218Google Scholar
  8. 8.
    Hilhorst MA (1998) Dielectric characterisation of soil. Doctoral-thesis, Wageningen University and Research Center, Wageningen, the Netherlands, ISBN 90-5485-810-9Google Scholar
  9. 9.
    Bratton WL, Pluimgraaff DJMH, Hilhorst MA (1995) CPT sensors for biocharacterization of contaminated sites. In: International symposium on cone penetration testing, Sweden, OctGoogle Scholar
  10. 10.
    SOWACS website:, february 2004Google Scholar
  11. 11.
    Hadjar A (1997) Zerstorungsfreie Feuchtemessverfahren fur Beton. In: Kupfer K (ed) 9 Feuchtetag, 7/18 Sept, MFPA an der Bauhaus-Universitat Weimar, pp 301–316Google Scholar
  12. 12.
    van Beek A, Hilhorst MA (1999) Dielectric characterization of young concrete. Heron 44(1), pp 3–17Google Scholar
  13. 13.
    Sokoll T, Jannsen B, Jacob AF (2002) A novel sensor for measuring ion concentration in concrete structures. In: Kupfer K (ed) 11 Feuchtetag, 18/19 Sept 2002, pp 36–46Google Scholar
  14. 14.
    Foster KR, Schwan HP (1986) Dielectric permittivity and electrical conductivity of biological materials. In: Polk C, Postow E (eds) Handbook of biological effects of electromagnetic fields. CRC Press, Boca Raton, FL, pp 27–98Google Scholar
  15. 15.
    Nacke T, Frense D, Göller A, Beckmann D (2001) Impedance spectroscopy — a tool for in situ biomass analyses and for the study of the toxic sensitivity of cells in suspension cultures. In: Proceedings of the fourth international conference on electromagnetic wave interactions with water and moist substances, Weimar, 13–16 May 2001, pp 93–100Google Scholar
  16. 16.
    Hilhorst MA, Balendonck J, Kampers FWH (1993) A broad-bandwidth mixed analog/digital integrated circuit for the measurement of complex impedances. IEEE J Solid-state Circuits 28(7):764–769CrossRefGoogle Scholar
  17. 17.
    Topp GC, Davis JL, Annan AP (1982) Electromagnetic determination of soil water content using TDR: II. Evaluation of installation and configuration of parallel transmission lines. Soil Sci Soc Am J 46:678–684CrossRefGoogle Scholar
  18. 18.
    Hilhorst MA, Dirksen C (1994) Dielectric water content sensors: time domain versus frequency domain. In: Proc of the symposium on TDR in environmental, infrastructure and mining applications, Evanston, Illinois, Sept 1994, pp 23–33Google Scholar
  19. 19.
    Dirksen C, Hilhorst MA (1994) Calibration of a new frequency domain sensor for soil water content and bulk electrical conductivity. In: Proceedings of the symposium on TDR in environmental, infrastructure and mining applications, Evanston, Illinois, Sept 1994, pp 43–153Google Scholar
  20. 20.
    Balendonck J (1997) Smart sensor chip for dielectric measurements In: Proceedings 8th international congress, transducers & systems, Sensor 97, Nürnberg, May 1997, vol 1, pp 253–258Google Scholar
  21. 21.
    Balendonck J, Hilhorst MA (1998) MCM100 Smart sensor interface for complex impedance measurement. Datasheet and application note. Report IMAG-DLO, Wageningen, Note P98-50, 45 ppGoogle Scholar
  22. 22.
    Balendonck J, Hilhorst MA (2001) Application of an intelligent dielectric sensor for soil water content, electrical conductivity and temperature. In: Proceedings of the 18th IEEE instrumentation and measurement technology conference, IMTC-2001, Budapest, 23–25 May 2001, pp 1817–1822Google Scholar
  23. 23.
    Seyfried MS, Murdock MD (2002) Effects of soil type and temperature on soil water measurement using a soil dielectric sensor. In: I.C. Paltineau (ed.), First International Symposium on Soil Water Measurement using Capacitance and Impedance, Beltsville, MD. 6–8 November 2002, pp 1–13Google Scholar
  24. 24.
    Kaatze U, Uhlendorf V (1981) The dielectric properties of water at microwave frequencies. Z Phys Chem, Neue Folge, 126:151–165Google Scholar
  25. 25.
    Balendonck J, Hilhorst MA (2001) WET sensor application note. IMAG Report 2001-07, WageningenGoogle Scholar
  26. 26.
    Heimovaara TJ (1993) Time domain reflectometry in soil science: theoretical backgrounds, measurements and models. PhD thesis, University of AmsterdamGoogle Scholar
  27. 27.
    Topp GC, Ferré PA (2001) Electromagnetic wave measurements of soil water content: a state-of-the-art. In: Fourth international conference on electromagnetic wave interaction with water and moist substances, Weimar, 13–16 May 2001Google Scholar
  28. 28.
    Kuyper MC, Balendonck J (1997) Application of dielectric soil moisture sensors for real-time automated irrigation control. In: Sensors in horticulture, Tiberias, Israel, August 1997Google Scholar
  29. 29.
    Perdok UD, Kroesbergen B, Hilhorst MA (1996) Influence of gravimetric water content and bulk density on the dielectric properties of soil. Eur J Soil Sci 47:367–371CrossRefGoogle Scholar
  30. 30.
    Kalman Rajkai (2002) Personal communication, Soil Science Department of the Research Institute for Soil Science and Agricultural Chemistry of Budapest, HungaryGoogle Scholar
  31. 31.
    Sonneveld C, van den Ende J (1971) Soil analysis by means of a 1:2 volume extract. Plant Soil 35:505–516CrossRefGoogle Scholar
  32. 32.
    Hilhorst MA, Balendonck J (1999) A pore water conductivity sensor to facilitate non-invasive soil water content measurements. In: Staffort JV (ed) Proceedings of the 2nd European conference in precision agriculture, Society of Chemical Industry, Odense, pp 211–220Google Scholar
  33. 33.
    Hilhorst MA (2000) A pore water conductivity sensor. Soil Sci Soc Am J 64(6), pp 1922–1925CrossRefGoogle Scholar
  34. 34.
    Dirksen C, Dasberg S (1993) Improved calibration of time domain reflectometry for soil water content measurements. Soil Sci Soc Am J 57:660–667CrossRefGoogle Scholar
  35. 35.
    Balendonck J, Hilhorst MA, van Roest H (2002) Water content and temperature dependency of pore water conductivity for the FD sensor in growing substrates. In: 11 Feuchtetag, 18/19 Sept 2002, MFPA an der Bauhaus-Universität Weimar, pp 67–76Google Scholar
  36. 36.
    van Beek A (2000) Dielectric properties of young concrete, non-destructive dielectric sensor for monitoring the strength development of young concrete. Dissertation, Delft UniversityGoogle Scholar
  37. 37.
    NEN 5970 (1999) Bepaling van de druksterkteontwikkeling van jong beton op basis van de gewogen rijpheid, oktoberGoogle Scholar
  38. 38.
    ASTM C-1074-93 (1998) Revised standard for testing young concrete, defined by the Am Soc for Testing and MaterialsGoogle Scholar
  39. 39.
    Tobio JM (1957) A study of the setting process: dielectric behaviour of several Spanish cements. In: Silicates Industrials, Comunication présentée aux Journees Internationales d’études, Liant hydrauliques 1957, de l’Assoiation belge pour favoriser L’étude des Verres et Composés siliceux, pp 30–35, 81-87Google Scholar
  40. 40.
    De Loor GP (1953) Method of obtaining information on the internal dielectric constant of mixtures. Appl Sci Res pp 479–482Google Scholar
  41. 41.
    Al-Qadi IL, Hazim OA, Su W, Riad SM (1995) Dielectric properties of Portland cement concrete at low frequencies. J Mat Civ Eng 7:192–198CrossRefGoogle Scholar
  42. 42.
    van Breugel K, Hilhorst MA, van Beek K, Stenfert-Kroese W (1996) In situ measurement of dielectric properties of hardening concrete as a basis for strength development. In: Proceedings of the 3rd conference on non-destructive evaluation of civil structures and materials, Sept 1996, pp 7–21Google Scholar
  43. 43.
    Hilhorst MA, van Breugel K, Pluimgraaf DJMH, Stenfert Kroese W (1996) Dielectric sensors used in environmental and construction engineering. Mat Res Soc Symp Proc 411:404–406Google Scholar
  44. 44.
    Stenfert Kroese WH, Hilhorst MA (2000) Method for determining the degree of hardening of a material. Patent WO9642014 and US 6023170, 2 Aug 2000Google Scholar
  45. 45.
    Dirksen C (1999) Soil Physics Measurements. Geo-Eeology, Catena Verlag, Reiskirchen, Germany, 1999Google Scholar
  46. 46.
    Richards LA (1949) Methods for measuring soil moisture tension. Soil Sci 68:95–112Google Scholar
  47. 47.
    Mullins CE, Mandiringana OT, Nisbet TR, Aitken MN (1986) The design, limitations, and use of a portable tensiometer. J Soil Sci 37:691–700Google Scholar
  48. 48.
    Bouyoucos GJ, Mick AH (1940) Electrical resistance method for the continuous measurement of soil moisture under field conditions. Michigan Agricultural Experimental Station, Tech Bull no 172Google Scholar
  49. 49.
    Thomson SJ, Armstrong CF (1987) Calibration of the Watermark Model 200 Soil Moisture Sensor. Appl Eng Agric 3(2): 186–189Google Scholar
  50. 50.
    Spaans EJA, Baker JM (1992) Calibration of the Watermark soil-water sensors for soil matric potential and temperature. Plant Soil 143:213–217CrossRefGoogle Scholar
  51. 51.
    Hilhorst MA, de Jong JJ (1988) A dielectric tensiometer. Agricultural Water Management 13:411–415, technical noteCrossRefGoogle Scholar
  52. 52.
    Liu Jin-Chen (2002) Ein neues Verfahren zur Messung des Matrixpotenzials im Bodem. In: 11 Feuchtetag, 18/19 Sept 2002, MFPA an der Bauhaus-Universität Weimar, pp 77–84Google Scholar
  53. 53.
    Or D, Wraith JM (1999) A new soil matric-potential sensor based on time-domain-reflectometry. Water Resour Res 35:3399–3407CrossRefGoogle Scholar
  54. 54.
    Bouyoucos GJ (1953) More durable plaster of Paris blocks. Soil Sci 76:447–451CrossRefGoogle Scholar
  55. 55.
    Liu Jin-Chen (1999) Device and method for determining properties of a soil. US Patent 5.898.310, 27 Apr 1999Google Scholar
  56. 56.
    van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  57. 57.
    Jaynes DB (1984) Comparisons of soil-water hysteresis models. J Hydrol 75:289–299CrossRefGoogle Scholar
  58. 58.
    Otten W, Raats PAC, Kabat P (1999) Hydraulic properties of root-zone substrates used in greenhouse horticulture. In: MTh van Genuchten et al (eds) Characterization and measurement of the hydraulic properties of unsaturated media, proceedings of international workshop, 22–27 Oct 1997, Riverside, California, pp 477–489Google Scholar
  59. 59.
    Kool JB, Parker JC (1987) Development and evaluation of closed form expressions for hysteretic soil hydraulic properties. Water Resour Res 23:105–114CrossRefGoogle Scholar
  60. 60.
    Scott PS, Farquhar GJ, Kouwen N (1983) Hysteretic effects on net infiltration. In: Advances in infiltration, Publication 11–83, American Society of Agricultural Engineering, St. Joseph, MI, pp 163–170Google Scholar
  61. 61.
    Paul W, Hilhorst MA, Münstermann C, Schmitz M (1998) Neue Meβtechniken zur gleichzeitigen Bestimmung von Wassergehalt, Wasserspannung und verfügbaren Düngersalzen im Boden, Vortrag Internationale Tagung Landtechnik, Garching 1998, VDI-MEG Verlag, Düsseldorf, 1998, S.223–228Google Scholar
  62. 62.
    Balendonck J et al (2001) Waterman. Final report, EC-project FAIR1-CT95-0681, CD-ROM, 13 Jan 2001Google Scholar
  63. 63.
    Paul W (2002) Prospects for controlled application of water and fertiliser, based on sensing permittivity of soil. Comput Electron Agric 36:51–163CrossRefGoogle Scholar
  64. 64.
    Whalley WR, Watts CW, Hilhorst MA, Bird NRA, Balendonck J, Longstaff DJ (2001) The design of porous material sensors to measure the matric potential of water in soil. EurJ Soil Sci 52:511–519CrossRefGoogle Scholar
  65. 65.
    Paul W (1998) Sensors for soil attributes, plant transpiration and water stress. In: Int Conf on Agr Eng; part 2, Oslo 1998, 98-C-010, pp 850–853Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jos Balendonck
    • 1
  • Max A. Hilhorst
    • 1
  • William R. Whalley
    • 2
  1. 1.Wageningen UR, Agrotechnology and Food InnovationsWageningenthe Netherlands
  2. 2.Soil Physics Group, Silsoe Research InstituteBedfordUK

Personalised recommendations