Advertisement

Optical Properties II

  • Peter Y. Yu
  • Manuel Cardona
Part of the Graduate Texts in Physics book series (GTP)

Summary

In this chapter we have studied light emission processes in semiconductors. In photoluminescence, external radiation excites electron-hole pairs in the sample. These relax to lower energy states by giving up their excess energy to phonons. As a result, the emission produced by the relaxed electron-hole pairs is characteristic of the bandgap of the semiconductor or of gap states associated with defects. Therefore, luminescence is a very useful technique for studying excitons, bound excitons, donors, acceptors and even deep centers (such as isoelectronic traps). Some of the radiation passing through a medium is always scattered by fluctuations in the medium. Such light scattering can also be understood in terms of spontaneous emission from polarizations induced in the medium by the incident radiation. When the induced polarization is modulated by phonons (both optical and acoustic) the incident light is inelastically scattered. These emission processes, known as Raman and Brillouin scattering, are very powerful tools for determining the frequency and symmetry of vibrational modes in condensed media. Their excitation spectroscopies (known as resonant Raman or resonant Brillouin scattering), in which one measures the scattering cross section as a function of the incident photon energy, are also extremely useful. We have shown that they can be used to determine electronic excitation energies, electron-phonon interaction and dispersion of excitons. Since real electron-hole pairs are excited in resonant Raman and Brillouin scattering as well as in photoluminescence, the distinction between the two starts to blur, leading to the suggestion that resonant light scattering processes, especially multiphonon ones, can be regarded as a form on nonthermalized luminescence or hot luminescence.

Keywords

Raman Scattering Acoustic Phonon Scattered Photon Neutral Donor Transverse Optical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 7

  1. 7.1
    W. Heitler: The Quantum Theory of Radiation (Oxford Univ. Press, Oxford 1954)Google Scholar
  2. 7.2
    A. Einstein: Emission and absorption of radiation in the quantum theory (in German). Verh. Dtsch. Phys. Ges. 18, 318–323 (1916)Google Scholar
  3. 7.3
    A. Einstein: The quantum theory of radiation (in German). Phys. Z. 18, 121–128 (1917)Google Scholar
  4. 7.4
    W. van Roosbroeck, W. Schockley: Photon-radiative recombination of electrons and holes in germanium. Phys. Rev. 94, 1558–1560 (1954) J. Pankove: Optical Processes in Semiconductors (Dover, New York 1971) p. 110CrossRefGoogle Scholar
  5. 7.5
    E. Burstein: Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954)CrossRefGoogle Scholar
  6. 7.6
    T.S. Moss: The interpretation of the properties of indium antimonide. Proc. Phys. Soc. (London) B 67, 775–782 (1954)CrossRefGoogle Scholar
  7. 7.7
    S. Wang: Fundamentals of Semiconductor Theory and Device Physics (Prentice Hall, Englewood Cliffs, NJ 1989) pp. 760–766Google Scholar
  8. 7.8
    N. Caswell, J. S. Weiner, P.Y. Yu: A study of non-thermalized luminescence spectra: The case of Cu2O. Solid State Commun. 40, 843–846 (1981)CrossRefGoogle Scholar
  9. 7.9
    P.Y. Yu, Y.R. Shen: Resonance Raman studies in cuprous oxide. II. The yellow and green excitonic series. Phys. Rev. B 17, 4017–4030 (1978)CrossRefGoogle Scholar
  10. 7.10
    L.T. Canham: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)CrossRefGoogle Scholar
  11. 7.11
    L.T. Canham, W.Y. Leong, T. I. Cox, M. I. Beale, K. J. Nash, P. Calcott, D. Brumhead, L. L. Taylor, K. J. Marsh: Efficient visible photoluminescence and electroluminescence from highly porous silicon, in The Physics of Semiconductors, ed. by P. Jiang, H.-Z. Zheng (World Scientific, Singapore 1992) Vol. 2, pp. 1423–1430Google Scholar
  12. 7.12
    K.H. Jung, S. Shih, D. L. Kwong: Developments in luminescent porous Si. J. Electrochem. Soc. 140, 3046–3064 (1993)CrossRefGoogle Scholar
  13. 7.13
    J. Zeman, M. Zigone, G.L. J.A. Rikken, G. Martinez: Hydrostatic pressure effects on the porous silicon luminescence. J. Phys. Chem. Solids 56, 655–661 (1995) For reviews on the luminescence of porous silicon see: L. Brus: Luminescence of silicon materials: Chains, sheets, nanocrystals, microcrystals, and porous silicon. J. Phys. Chem. 98, 3575–3581 (1994)CrossRefGoogle Scholar
  14. 7.14
    C. Kittel: Introduction to Solid State Physics, 7th edn. (Wiley, New York 1995)Google Scholar
  15. 7.15
    J. Pankove. Optical Processes in Semiconductors (Dover, New York 1971)Google Scholar
  16. 7.16
    P.Y. Yu, B. Welber: High pressure photoluminescence and resonance Raman studies of GaAs. Solid State Commun. 25, 209–211 (1978)CrossRefGoogle Scholar
  17. 7.17
    H.Y. Fan: Temperature dependence of the energy gap in semiconductors. Phys. Rev. 82, 900–905 (1951)CrossRefGoogle Scholar
  18. 7.18
    J.C. Inkson: The effect of electron interaction on the band gap of extrinsic semiconductors. J. Phys. C 9, 1177–1183 (1976)CrossRefGoogle Scholar
  19. 7.19
    W.P. Dumke: Optical transitions involving impurities in semiconductors. Phys. Rev. 132, 1998–2002 (1963)CrossRefGoogle Scholar
  20. 7.20
    F.E. Williams: Theory of the energy levels of donor-acceptor pairs. J. Phys. Chem. Solids 12, 265–275 (1960)CrossRefGoogle Scholar
  21. 7.21
    P.J. Dean: Inter-impurity recombinations in semiconductors. Progress in Solid State Chemistry 8, 1–216 (Pergamon, Oxford 1973)Google Scholar
  22. 7.22
    D.G. Thomas, M. Gershenzon, F. A. Trumbore: Pair spectra and “edge” emission in gallium phosphide. Phys. Rev. 133, A269–279 (1964)CrossRefGoogle Scholar
  23. 7.23
    P.J. Dean, E.G. Schönherr, R.B. Zetterstrom: Pair spectra involving the shallow acceptor Mg in GaP. J. Appl. Phys. 41, 3474–3479 (1970)Google Scholar
  24. 7.24
    D.G. Thomas, J. J. Hopfield, W.N. Augustyniak: Kinetics of radiative recombination of randomly distributed donors and acceptors. Phys. Rev. 140, A202–220 (1965)CrossRefGoogle Scholar
  25. 7.25
    D.D. Sell, S. E. Stokowski, R. Dingle, J.V. DiLorenzo: Polariton reflectance and photoluminescence in high-purity GaAs. Phys. Rev. B 7, 4568–4586 (1973)CrossRefGoogle Scholar
  26. 7.26
    F. Askary, P.Y. Yu: Polariton luminescence and additional boundary conditions: Comparison between theory and experiment. Solid State Commun. 47, 241–244 (1983)CrossRefGoogle Scholar
  27. 7.27
    Y. Toyozawa: On the dynamical behavior of an exciton. Prog. Theor. Phys. Suppl. 12, 111–140 (1959)CrossRefGoogle Scholar
  28. 7.28
    J.J. Hopfield: Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112, 1555–1567 (1958)CrossRefGoogle Scholar
  29. 7.29
    J.D. Jackson: Classical Electrodynamics, 2nd edn. (Wiley, New York 1975) pp. 17–22; p. 396Google Scholar
  30. 7.30
    S.I. Pekar: The theory of electromagnetic waves in a crystal in which excitons are produced. Sov. Phys. — JETP 6, 785–796 (1958); ibid. 7, 813–822 (1958)Google Scholar
  31. 7.31
    C.S. Ting, M. J. Frankel, J. L. Birman: Electrodynamics of bounded spatially dispersive media: The additional boundary conditions. Solid State Commun. 17, 1285–1289 (1975)CrossRefGoogle Scholar
  32. 7.32
    K. Cho (ed.): Excitons, Topics Curr. Phys. Vol. 14 (Springer, Berlin, Heidelberg 1979)Google Scholar
  33. 7.33
    A. Stahl, I. Balslev: Electrodynamics of the Semiconductor Band Edge, Springer Tracts Mod. Phys., Vol. 110 (Springer, Berlin, Heidelberg 1987)Google Scholar
  34. 7.34
    J. Tignon, T. Hasche, D. Chaula, H.C. Schneider, F. Jahnke, S.W. Koch: Unified Picture of Polariton Propagation in Bulk GaAs Semiconductors. Phys. Rev. Lett. 84, 3382 (2000)CrossRefGoogle Scholar
  35. 7.35
    T. Steiner, M.L. Thewalt, E. S. Koteles, J. P. Salerno: Effect of neutral donor scattering on the time-dependent exciton-polariton photoluminescence line shape in GaAs. Phys. Rev. B 34, 1006–1013 (1986)CrossRefGoogle Scholar
  36. 7.36
    D.G. Thomas, J. J. Hopfield: Optical properties of bound exciton complexes in cadmium sulfide. Phys. Rev. 128, 2135–2148 (1962)CrossRefGoogle Scholar
  37. 7.37
    R. McWeeny: Coulson's Valence, 3rd edn. (Oxford Univ. Press, Oxford 1979) p. 90Google Scholar
  38. 7.38
    J.J. Hopfield: The quantum chemistry of bound exciton complexes, in Proc. 7th Int'l Conf. on the Physics of Semiconductors, ed. by M. Hulin (Dunod, Paris 1964) pp. 725–735Google Scholar
  39. 7.39
    L. Pauling, E.B. Wilson: Introduction to Quantum Mechanics (McGraw-Hill, New York 1935) p. 225Google Scholar
  40. 7.40
    D.D. Thornton, A. Honig: Shallow-donor negative ions and spin-polarized electron transport in silicon. Phys. Rev. Lett. 30, 909–912 (1973)CrossRefGoogle Scholar
  41. 7.41
    S. Huant, S. P. Najda, B. Etienne: Two-dimensional D centers. Phys. Rev. Lett. 65, 1486–1489 (1980)CrossRefGoogle Scholar
  42. 7.42
    M.L. Lambert: Mobile and Immobile Effective-Mass-Particle Complexes in Nonmetallic Solids. Phys. Rev. Lett. 1, 450–453 (1958)CrossRefGoogle Scholar
  43. 7.43
    G. Finkelstein, H. Shtrikmann and I. Bar-Joseph: Optical spectroscopy of a two-dimensional electron gas near the metal-insulator transition. Phys. Rev. Lett. 74, 976 (1993)CrossRefGoogle Scholar
  44. 7.44
    R.T. Cox, V. Huard, K. Kheng, S. Lovisa, R.B. Miller, K. Saminadayar, A. Arnoult, J. Cibert, S. Tatarenko and M. Potemski: Exciton Trions in II-VI Heterostructures. Acta Physica Polonica A, 94, 99 (1998)CrossRefGoogle Scholar
  45. 7.45
    M. Stuke (ed.): Dye Lasers: 25 Years, Topics Appl. Phys., Vol. 70 (Springer, Berlin, Heidelberg 1992)Google Scholar
  46. 7.46
    W. Gellermann: Color center lasers. J. Phys. Chem. Solids 52, 249–279 (1991)CrossRefGoogle Scholar
  47. 7.47
    Y.A. Carts: Titanium sapphire's star rises. Laser Focus World 25, 73–88 (September 1989)Google Scholar
  48. 7.48
    A. Sanchez, R. E. Fahey, A. J. Strauss, R.L. Aggarwal: Room temperature CW operation of the Ti:Al2O3 laser, in Tunable Solid State Lasers II, ed. by A.B. Budgor, L. Esterowitz, G. DeShazer, Springer, Ser. Opt. Sci., Vol. 52 (Springer, Berlin, Heidelberg 1986) p. 202CrossRefGoogle Scholar
  49. 7.49
    R. Dingle: Optical properties of semiconductors superlattices, in Proc. 13th Int'l Conf. on the Physics of Semiconductors, ed. by F. Fumi (Tipografia Marves, Rome 1976) pp. 965–974Google Scholar
  50. 7.50
    H.W. Liu, R. Ferreira, G. Bastard, C. Delalande, J. F. Palmier, B. Etienne: Optical evidence of assisted tunneling in a biased double quantum well structure. Appl. Phys. Lett. 54, 2082–2084 (1989)CrossRefGoogle Scholar
  51. 7.51
    P.S. Kop'ev, N.N. Ledentsov, B. Ya. Meltser, I.N. Uraltsev, A.L. Efros, D.R. Yakovlev: Exciton luminescence probe of interface quality in multi-quantum well structures, in The Physics of Semiconductors, ed. by O. Engström (World Scientific, Singapore 1986) pp. 219–222Google Scholar
  52. 7.52
    H. Tews, H. Venghaus, P. J. Dean: Excited states of shallow acceptors in ZnSe. Phys. Rev. B 19, 5178–5184 (1979)CrossRefGoogle Scholar
  53. 7.53
    L. Brillouin: Scattering of light and X-rays by a transparent homogeneous body: Influence of the thermal agitation (in French). Ann. Physique 17, 88–122 (1922)Google Scholar
  54. 7.54
    L.I. Mandelstam: On light scattering by an inhomogeneous medium (in Russian). Zh. Russko Fiz. Khim. Obshch. (J. Russian Physico-Chemical Soc.) 58, 381 (1926)Google Scholar
  55. 7.55
    C.V. Raman: A new class of spectra due to secondary radiation. Ind. J. Phys. 2, 387–400 (1928) C.V. Raman: A change of wavelength in light scattering. Nature 121, 619–620 (1928)Google Scholar
  56. 7.56
    A.K. Ramdas, S. Rodriguez: Raman Scattering in Diluted Semiconductor in Light Scattering in Solids VI, ed. by M. Cardona and G. Güntherodt (Springer, Heidelberg 1991) pp. 137–206; see also Light scattering in Solids VII, ed. by M. Cardona and G. Güntherodt (Springer, Heidelberg, 1999)CrossRefGoogle Scholar
  57. 7.57
    R. Loudon: Theory of the first-order Raman effect in crystals. Proc. Roy. Soc. (London) A 275, 218–232 (1963)CrossRefGoogle Scholar
  58. 7.58
    R. Loudon: Raman effect in crystals. Adv. Phys. 13, 423–482 (1964); erratum ibid. 14, 621 (1965)CrossRefGoogle Scholar
  59. 7.59
    E. Burstein, A. Pinczuk: Light scattering by collective excitation in dielectrics and semiconductors, in The Physics of Opto-electronic Materials, ed. by W. A. Albers Jr (Plenum, New York 1971) pp. 33–79CrossRefGoogle Scholar
  60. 7.60
    Z.P. Su, T. Ruf, K.R. Wald and P.Y. Yu: Resonant Generation of Nonequilibrium Phonons in GaAs/AlAs Quantum Wells via Intersubband Scattering. Proc. of 22nd Int. Conf. on The Physics of Semicond., et. by D. J. Lockwood, (World Scientific, Singapore, 1995) p. 963–966Google Scholar
  61. 7.61
    Y.R. Shen: The Principles on Nonlinear Optics (Wiley, New York 1984) pp. 141–186Google Scholar
  62. 7.62
    M.R. Zatzick: How to make every photon count. Electro-Opt. Syst. Design 20–23, 26–27 (1972)Google Scholar
  63. 7.63
    R.K. Chang, M.B. Long: Optical multichannel detection, in Light Scattering in Solids II, ed. by M. Cardona, G. Güntherodt, Topics Appl. Phys., Vol. 49 (Springer, Berlin, Heidelberg 1983) Chap. 3, pp. 179–205Google Scholar
  64. 7.64
    J.C. Tsang: Multichannel detection and Raman sprectroscopy of surface layers and interfaces, in Light Scattering in Solids V, ed. by M. Cardona, G. Güntherodt, Topics Appl. Phys., Vol. 66 (Springer, Berlin, Heidelberg 1989) Chap. 6, pp. 233–284CrossRefGoogle Scholar
  65. 7.65
    C. Firmani, E. Ruiz, C.W. Carlson, M. Lampton, F. Paresce: High-resolution imaging with a two-dimensional resistive anode photon counter. Rev. Sci. Instrum. 53, 570–574 (1982)CrossRefGoogle Scholar
  66. 7.66
    C. Firmani, L. Gutierrez, E. Ruiz, G. F. Bisiacchi, L. Salas, F.E. Paresce, C.W. Carlson, M. Lampton: High dispersion spectrophotometry with the mepsicron photon counter. Astron. Astrophys. 134, 251–257 (1984)Google Scholar
  67. 7.67
    A. Mooradian, G.B. Wright: First order Raman effect in III-V compounds. Solid State Commun. 4, 431–434 (1966)CrossRefGoogle Scholar
  68. 7.68
    P.A. Temple, C.E. Hathaway: Multiphonon Raman spectrum of silicon. Phys. Rev. B 7, 3685–3697 (1973)CrossRefGoogle Scholar
  69. 7.69
    J.L. Birmann: Space group selection rules: Diamond and zinc blende. Phys. Rev. 127, 1093–1106 (1965)CrossRefGoogle Scholar
  70. 7.70
    L. Kleinman: Polarization effects in two-phonon Raman scattering in cubic crystals. Solid State Commun. 3, 47–53 (1965)CrossRefGoogle Scholar
  71. 7.71
    B.A. Weinstein, M. Cardona: Second-order Raman spectrum of germanium. Phys. Rev. B 7, 2545–2551 (1973)CrossRefGoogle Scholar
  72. 7.72
    G. Nelin, G. Nilsson: Phonon density of states in germanium at 80 K measured by neutron spectrometry. Phys. Rev. B 5, 3151–3160 (1972)CrossRefGoogle Scholar
  73. 7.73
    C.H. Henry, J. J. Hopfield: Raman scattering by polaritons. Phys. Rev. Lett. 15, 964–966 (1965)CrossRefGoogle Scholar
  74. 7.74
    L.B. Humphreys, A.A. Maradudin: Ionic Raman effect. III. First and second-order ionic Raman effect. Phys. Rev. B 6, 3886–3897 (1972)CrossRefGoogle Scholar
  75. 7.75
    V.B. Berestetskii, E. M. Lifshitz, L. P. Pitaevskii: Quantum Electrodynamics (Pergamon, Oxford 1980)Google Scholar
  76. 7.76
    W.E. Parry: The Many-Body Problem (Clarendon, Oxford 1973)Google Scholar
  77. 7.77
    V.I. Belitsky, A. Cantarero, M. Cardona, I.G. Lang, S.T. Pavlov: Spatial correlation of electrons and hole in multiphonon resonant Raman scattering in a high magnetic field. Phys. Rev. B 46 15767–15788 (1992)CrossRefGoogle Scholar
  78. 7.78
    R.M. Martin, L. M. Falicov: Resonance Raman scattering, in Light Scattering in Solids I, ed. by M. Cardona, 2nd edn., Topics Appl. Phys., Vol. 8 (Springer, Berlin, Heidelberg 1983) Chap. 3, pp. 70–145Google Scholar
  79. 7.79
    A. Pine: Brillouin scattering in semiconductors, in Light Scattering in Solids I, ed. by M. Cardona, 2nd edn., Topics Appl. Phys., Vol. 8 (Springer, Berlin, Heidelberg 1983) Chap. 6, pp. 253–273CrossRefGoogle Scholar
  80. 7.80
    A. Dervisch, R. Loudon: Theory of Brillouin scattering lineshape in an opaque material. J. Phys. C 9, L669–673 (1976)CrossRefGoogle Scholar
  81. 7.81
    A.S. Pine, G. Dresselhaus: Lineshape asymmetries in light scattering from opaque materials, in Light Scattering in Solids, ed. by M. Balkanski, R.C.C. Leite, S. P. S. Porto (Flammarion, Paris 1976) p. 138Google Scholar
  82. 7.82
    J.R. Sandercock: Brillouin scattering measurements on silicon and germanium. Phys. Rev. Lett. 8, 237–240 (1972)CrossRefGoogle Scholar
  83. 7.83
    J.R. Sandercock: Light scattering from surface acoustic phonons in metals and semiconductors. Solid State Commun. 26, 547–551 (1978)CrossRefGoogle Scholar
  84. 7.84
    J.R. Sandercock: The design and use of a stabilized multipassed interferometer of high contrast ratio, in 2nd Int'l Conf. on Light Scattering in Solids, ed. by M. Balkanski (Flammarion, Paris 1971) pp. 9–12Google Scholar
  85. 7.85
    J.M. Ralston, R. L. Wadsack, R. K. Chang: Resonant cancellation of Raman scattering from CdS and Si. Phys. Rev. Lett. 25, 814–818 (1970)CrossRefGoogle Scholar
  86. 7.86
    J. Menéndez, M. Cardona: Interference between allowed and forbidden Raman scattering by longitudinal-optical phonons in GaAs. Phys. Rev. Lett. 51, 1297–1299 (1983)CrossRefGoogle Scholar
  87. 7.87
    R. Zeyher, H. Bilz, M. Cardona: On the ω4 law in microscopic theories of inelastic light scattering. Solid State Commun. 19, 57 (1976) R. M. Martin: Resonance Raman scattering near critical points. Phys. Rev. B 10, 2620 (1974)CrossRefGoogle Scholar
  88. 7.88
    B.A. Weinstein, M. Cardona: Resonant first-and second-order Raman scattering in GaP. Phys. Rev. B 8, 2795–2809 (1973)CrossRefGoogle Scholar
  89. 7.89
    A. Cantarero, C. Trallero-Giner, M. Cardona: Excitons in one-phonon resonant Raman scattering. Solid State Commun. 69, 1183–1186 (1989)CrossRefGoogle Scholar
  90. 7.90
    A.K. Ganguly, J.L. Birman: Theory of lattice Raman scattering in insulators. Phys. Rev. 162, 806–816 (1967)CrossRefGoogle Scholar
  91. 7.91
    B. Bendow, J.L. Birman: Polariton theory of Raman scattering in insulating crystals. Phys. Rev. B 4, 1678–1686 (1971)Google Scholar
  92. 7.92
    P.Y. Yu: Study of excitons and exciton-phonon interactions by resonant Raman and Brillouin spectroscopies, in Excitons, ed. by K. Cho, Topics Curr. Phys., Vol. 14 (Springer, Berlin, Heidelberg) 1979) p. 211CrossRefGoogle Scholar
  93. 7.93
    C. Weisbuch, R.G. Ulbricht: Resonant light scattering mediated by excitonic polaritons in semiconductors, in Light Scattering in Solids III, ed. by M. Cardona, G. Güntherodt, Topics Appl. Phys., Vol. 51 (Springer, Berlin, Heidelberg 1982) Chap. 7Google Scholar
  94. 7.94
    J. Reydellet, P.Y. Yu, J.M. Besson, M. Balkanski: Cascade resonant Raman processes in GaSe, in Physics of Semiconductors 1978, ed. by B. L. H. Wilson (Inst. of Phys., Bristol, UK 1979) pp. 1271–1274Google Scholar
  95. 7.95
    E.I. Rashba, G. Gurgenishvili: Edge absorption theory in semiconductors. Sov. Phys. — Solid State 4, 759–760 (1962)Google Scholar
  96. 7.96
    A.S. Barker Jr., A. J. Sievers: Optical studies of the vibrational properties of disordered solids. Rev. Mod. Phys. 47, S1–178 (1975) P.Y. Yu, M.H. Pilkhun, F. Evangelisti: Resonant Raman scattering of Cl in CdS. Solid State Commun. 25, 371–373 (1978)CrossRefGoogle Scholar
  97. 7.97
    M.A. Washington, A. Z. Genack, H. Z. Cummins, R.H. Bruce, A. Compaan, R. A. Forman: Spectroscopy of excited yellow exciton states in Cu2O by forbidden resonant Raman scattering. Phys. Rev. B 15, 2145–2153 (1977)CrossRefGoogle Scholar
  98. 7.98
    J.S. Weiner, N. Caswell, P.Y. Yu, A. Mysyrowicz: Ortho-to para-exciton conversion in Cu2O: A subnanosecond time-resolved photoluminescence study. Solid State Commun. 46, 105–108 (1983)CrossRefGoogle Scholar
  99. 7.99
    M. Cardona, M. Grimsditch, D. Olego: Theoretical and experimental determination of Raman scattering cross sections in simple solids, in Light Scattering in Solids, ed. by J. L. Birman, H. Z. Cummins, K.K. Rebane (Plenum, New York 1979) pp. 249–256CrossRefGoogle Scholar
  100. 7.100
    A. Cantarero, C. Trallero-Giner, M. Cardona: Excitons in one-phonon resonant Raman scattering: Deformation potential interaction. Phys. Rev. B 39, 8388–8397 (1989)CrossRefGoogle Scholar
  101. 7.101
    A. Cantarero, C. Trallero-Giner, M. Cardona: Excitons in one-phonon resonant Raman scattering: Fröhlich and interference effects. Phys. Rev. B 40, 12290–12295 (1989)CrossRefGoogle Scholar
  102. 7.102
    M. Cardona: Resonance phenomena, in Light Scattering in Solids II, ed. by M. Cardona, G. Güntherodt, Topics Appl. Phys., Vol. 50 (Springer, Berlin, Heidelberg 1982) Chap. 2, pp. 19–176CrossRefGoogle Scholar
  103. 7.103
    R. M. Martin: Theory of the one-phonon resonance Raman effect. Phys. Rev. B 4, 3676–3684 (1971)CrossRefGoogle Scholar
  104. 7.104
    R. M. Martin, T.C. Damen: Breakdown of selection rules in resonance Raman scattering. Phys. Rev. Lett. 26, 86–89 (1971)CrossRefGoogle Scholar
  105. 7.105
    P. J. Colwell, M.V. Klein: Wave vector dependence and numerical value of the scattering efficiency for the resonant Raman effect in CdS. Solid State Commun. 8, 2095–2100 (1970)CrossRefGoogle Scholar
  106. 7.106
    S. Permogorov, A. Reznitzky: Wave vector conservation in the first order resonant Raman scattering. Solid State Commun. 18, 781–784 (1976)CrossRefGoogle Scholar
  107. 7.107
    E. F. Gross, S.A. Permogorov, V.V. Travnikov, A.V. Sel'kin: Inelastic scattering of polaritons in CdS crystals, in Light Scattering in Solids, ed. by M. Balkanski (Flammarion, Paris 1971) pp. 238–243Google Scholar
  108. 7.108
    R.C.C. Leite, J.C. Scott, T.C. Damen: Multiple-phonon resonant Raman scattering in CdS. Phys. Rev. Lett. 22, 780–782 (1969)CrossRefGoogle Scholar
  109. 7.109
    M.V. Klein, S. P. S. Porto: Multiple-phonon-resonance Raman effect in CdS. Phys. Rev. Lett. 22, 782–784 (1969)CrossRefGoogle Scholar
  110. 7.110
    R. M. Martin, C. M. Varma: Cascade theory of inelastic scattering of light. Phys. Rev. Lett. 26, 1241–1244 (1971)CrossRefGoogle Scholar
  111. 7.111
    R. Zeyher: Theory of multiphonon Raman spectra above the energy gap in semiconductor. Solid State Commun. 16, 49–52 (1975)CrossRefGoogle Scholar
  112. 7.112
    J. Menéndez, M. Cardona: Interference effects: A key to unterstanding forbidden Raman scattering by LO phonons in GaAs. Phys. Rev. B 31, 3696–3706 (1985)CrossRefGoogle Scholar
  113. 7.113
    M.V. Klein: The equivalence of resonance Raman scattering in solids with absorption followed by luminescence. Phys. Rev. B 8, 919–921 (1973)CrossRefGoogle Scholar
  114. 7.114
    Y. R. Shen: Distinction between resonance Raman scattering and hot luminescence. Phys. Rev. B 9, 622–626 (1974)CrossRefGoogle Scholar
  115. 7.115
    A. GarcÍa-Cristóbal, A. Cantarero, C. Trallero-Giner, M. Cardona: Excitonic model for second-order resonance Raman scattering. Phys. Rev. B 49, 13430–13445 (1994)CrossRefGoogle Scholar
  116. 7.116
    D. Olego, M. Cardona: Raman scattering by two LO-phonons near Γ in GaAs. Solid State Commun. 39, 1071–1075 (1981)CrossRefGoogle Scholar
  117. 7.117
    K. Huang: The long wave modes of the Cu2O lattice. Z. Physik 171, 213–225 (1963)CrossRefGoogle Scholar
  118. 7.118
    C. Carabatos, B. Prevot: Rigid ion model lattice dynamics of cuprite (Cu2O). Phys. Status Solidi (b) 44, 701–712 (1971)CrossRefGoogle Scholar
  119. 7.119
    E. Burstein, D. L. Mills, A. Pinczuk, S. Ushioda: Exciton-enhanced Raman scattering by optical phonons. Phys. Rev. Lett. 22, 348–352 (1969)CrossRefGoogle Scholar
  120. 7.120
    J. J. Hopfield: Resonant scattering of polaritons as composite particles. Phys. Rev. 182, 945–952 (1969)CrossRefGoogle Scholar
  121. 7.121
    B. Bendow, J.L. Birman: Polariton theory of resonant Raman scattering in insulating crystals. Phys. Rev. B 1, 1678–1686 (1970)CrossRefGoogle Scholar
  122. 7.122
    D.C. Reynolds, R.N. Euwema, T.C. Collins: Evidence for spatial dispersion in emission from CdS platelets, in Proc. Int'l Conf. on the Physics of Semiconductors, ed. by S. M. Ryvkin (Nauka, Moscow 1968) pp. 210–216Google Scholar
  123. 7.123
    V. A. Kiselev, B. S. Razbirin, I.N. Uraltsev: Additional waves and Fabry-Perot interference of photoexcitation (polaritons) in thin II-VI crystals. Phys. Status Solidi B 72, 161–172 (1975)CrossRefGoogle Scholar
  124. 7.124
    W. Brenig, R. Zeyher, J.L. Birman: Spatial dispersion effects in resonant polariton scattering. II. Resonant Brillouin scattering. Phys. Rev. B 6, 4617–4622 (1972)CrossRefGoogle Scholar
  125. 7.125
    R.G. Ulbrich, C. Weisbuch: Resonant Brillouin scattering of excitonic polaritons in gallium arsenide. Phys. Rev. Lett. 38, 865–868 (1977)CrossRefGoogle Scholar
  126. 7.126
    R.G. Ulbrich: Resonant Brillouin scattering in semiconductors. Festkörperprobleme (Adv. Solid State Phys.) 18, 217–240 (Vieweg, Braunschweig 1978)Google Scholar
  127. 7.127
    E. S. Koteles: Investigation of exciton-polariton dispersion using laser techniques, in Excitons, ed. by E. I. Rashba, M.D. Sturge (North-Holland, Amsterdam 1982) pp. 85–140Google Scholar
  128. 7.128
    P. Wickboldt, E. Anastassakis, R. Sauer, M. Cardona: Raman phonon piezospectroscopy in GaAs: Infrared measurements. Phys. Rev. B 35, 1362–1368 (1987)CrossRefGoogle Scholar

General Reading

  1. Agrawal, G. P.: Semiconductor Lasers: post, present, and future. (AIP Press, Woodburry, New York, 1995)CrossRefGoogle Scholar
  2. Balkanski M. (ed.): Light Scattering in Solids (Flammarion, Paris 1971)Google Scholar
  3. Bebb H.B., E.W. Williams: Photoluminescence: I. Theory, II. Gallium arsenide. Semiconductors and Semimetals 8, 182–329 (Academic, New York 1972)Google Scholar
  4. Cardona M., G. Güntherodt (eds.): Light Scattering in Solids I–VI, Topics Appl. Phys., Vols. 8, 50, 51, 54, 66, 68 (Springer, Berlin, Heidelberg 1975–91)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Peter Y. Yu
    • 1
  • Manuel Cardona
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Max-Planck-Institut für FestkörperforschungStuttgartGermany

Personalised recommendations