Optical Properties I

  • Peter Y. Yu
  • Manuel Cardona
Part of the Graduate Texts in Physics book series (GTP)


Chapters 6 and 7 are devoted to the study of the optical properties of semiconductors. In this chapter we have discussed those phenomena involving only one photon frequency. In processes like absorption and reflection an incident electromagnetic wave illuminates the sample and the frequency of the wave is unchanged by its interaction with the sample. In the following chapter we shall discuss phenomena in which the frequency of the incident wave is altered by the sample. The optical properties of the sample studied in this chapter can be completely described by its complex dielectric function. A microscopic theory of this function shows that photons interact mainly with the electrons in semiconductors by exciting interband and intraband transitions. Interband transitions from the valence bands to the conduction bands produce peaks and shoulders in the optical spectra which can be attributed to Van Hove singularities in the valence-conduction band joint density of states. These structures can be greatly enhanced by using the technique of modulation spectroscopy, in which the derivatives of some optical response function with respect to either frequency or an external modulation (such as electric and stress fields) are measured. These optical measurements have provided an extremely sensitive test of existing electronic band structure calculations. Occasionally, disagreements between experimental and theoretical spectral peak positions and lineshapes have been found. These can be explained by the excitonic effect as a result of the Coulomb interaction between excited electrons and holes in the semiconductor. Intraband electronic transitions occur in doped semiconductors and their contribution to the optical properties can be obtained by using the Drude model proposed for free electrons in simple metals.

Transitions between the discrete levels of impurities in semiconductors can also contribute to absorption of photons in the infrared. Although these extrinsic absorption processes are much waker than those involving intrinsic electronic transitions, they can give rise to extremely sharp peaks and have been a very useful and highly sensitive probe of the electronic energy levels of impurities. Finally, in polar semiconductors, such as those with the zincblende crystal structure, photons can be absorbed and reflected as a result of interaction with optical phonons. The reflectivity becomes particularly high for photons with frequency between the TO and LO phonon frequencies, giving rise to a phenomenon known for a long time as reststrahlen. The coupling between infrared-active optic phonons and electromagnetic waves can be so strong that they cannot be separated inside the medium. Instead, they should be regarded as coupled waves or quasiparticles known as phonon-polaritons.


Photon Energy Valence Band Absorption Edge Dielectric Function Modulation Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 6

  1. 6.1
    L. Brillouin: Scattering of light and X-rays by a transparent homogeneous body: Influence of the thermal agitation (in French). Ann. Pysique 17, 88–122 (1922) L.I. Mandelstam: On light scattering by an inhomogeneous medium (in Russian). Zh. Russko Fiz. Khim. Obshch. (J. Russian Physico-Chemical Soc.) 58, 381 (1926)Google Scholar
  2. 6.2
    Y.R. Shen: The Principles of Nonlinear Optics (Wiley, New York 1989) D.L. Mills: Nonlinear Optics (Springer, Berlin, Heidelberg 1991)Google Scholar
  3. 6.3
    H. Haug, S.W. Koch: Quantum Theory of Optical and Electronic Properties of Semiconductors (World Scientific, Singapore 1990)CrossRefGoogle Scholar
  4. 6.4
    F. Henneberger, S. Schmidt-Rink, E.O. Göbel (eds.): Optics of Semiconductor Nanostructures (Akademie, Berlin 1993); J. Shah: Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, (Springer, Heidelberg, 1999)Google Scholar
  5. 6.5
    J.D. Joannopoulos, R.D. Meade, J.N. Winn: Photonic Crystals (Princeton University Press, 1995)Google Scholar
  6. 6.6
    L.D. Landau, I.M. Lifshitz: Statistical Physics, 3rd edn. (Addison-Wesley, Reading, MA 1980)Google Scholar
  7. 6.7
    P.Y. Yu, M. Cardona: Spatial dispersion in the dielectric constant of GaAs. Solid State Commun. 9, 1421–1424 (1971)CrossRefGoogle Scholar
  8. 6.8
    P. Etchegoin, M. Cardona: Stress induced optical activity in zincblende-type semiconductors. Solid State Commun. 82, 655–661 (1992)CrossRefGoogle Scholar
  9. 6.9
    V.M. Agranovich, V. Ginzburg: Crystal Optics with Spatial Dispersion, Springer Ser. Solid-State Sci., Vol. 42 (Springer, Berlin, Heidelberg 1984)CrossRefGoogle Scholar
  10. 6.10
    J.D. Jackson: Classical Electrodynamics, 2nd edn. (Wiley, New York 1975)Google Scholar
  11. 6.11
    M. Cardona: Modulation Spectroscopy, Solid State Physics, Suppl.11 (Academic, New York 1969) pp. 55–65Google Scholar
  12. 6.12
    D.E. Aspnes, A.A. Studna: Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27, 985–1009 (1983)CrossRefGoogle Scholar
  13. 6.13
    P.S. Hauge: Recent developments in instrumentation in ellipsometry. Surf. Sci. 96, 108–140 (1980)CrossRefGoogle Scholar
  14. 6.14
    H.R. Philipp, H. Ehrenreich: Ultraviolet optical properties — optical properties of III–V compounds. Semiconductors and Semimetals 3, 93–124 (Academic, New York 1967)Google Scholar
  15. 6.15
    C. Kunz: Synchrotron Radiation, Techniques and Applications, Topics Curr. Phys., Vol. 10 (Springer, Berlin, Heidelberg 1979)Google Scholar
  16. 6.16
    E.E. Koch: Handbook of Synchrotron Radiation (North-Holland, Amsterdam 1983)Google Scholar
  17. 6.17
    W. Heitler: The Quantum Theory of Radiation, 3rd edn. (Oxford Univ. Press, Oxford 1954) pp. 56–64Google Scholar
  18. 6.18
    M. Cardona, F.H. Pollak: Energy-band structure of germanium and silicon: The k · p method. Phys. Rev. 142, 530–543 (1966)CrossRefGoogle Scholar
  19. 6.19
    M. Cardona, N.E. Christensen, G. Fasol: Relativistic band structure and spinorbit splitting of zincblende-type semiconductors. Phys. Rev. B 38, 1806–1827 (1988)CrossRefGoogle Scholar
  20. 6.20
    L. Van Hove: The occurence of singularities in the elastic frequency distribution of a crystal. Phys. Rev. 89, 1189–1193 (1953)CrossRefGoogle Scholar
  21. 6.21
    M.L. Cohen, J.R. Chelikowsky: Electronic Structure and Optical Properties of Semiconductors, 2nd edn., Springer Ser. Solid-State Sci., Vol. 75 (Springer, Berlin, Heidelberg 1989)CrossRefGoogle Scholar
  22. 6.22
    L.X. Benedict, E.L. Shirley, R.B. Bohn: Theory of optical absorption in diamond, Si, Ge, and GaAs. Phys. Rev. B 57, R9385–9387 (1998)CrossRefGoogle Scholar
  23. 6.23
    S. Albrecht, L. Reining, R. Del Sole, G. Onida: Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys. Rev. Lett. 80, 4510–4153 (1998) Note that the peak calculated to appear in Si at 3.8 eV is not observed experimentally and must be due to a shortcoming in the calculationCrossRefGoogle Scholar
  24. 6.24
    M. Cardona, L.F. Lastras-Martínez, D.E. Aspues: Comment on “Ab initio calculations of excitonic effects in the optical spectra of semiconductors”, Phys. Rev. Lett. 83, 3970 (1999)CrossRefGoogle Scholar
  25. 6.25
    C.W. Higginbotham: Band structure and optical properties of semiconductors, PhD Thesis, Brown University, Providence, RI (1970)Google Scholar
  26. 6.26
    M. Cardona, NE. Christensen: Spin-Orbit Splittings in AlN, GaN, and InN, Solid State Commun. 116, 421–425 (2000)CrossRefGoogle Scholar
  27. 6.27
    G. Ramírez-Flores, H. Navarro-Contreras, A. Lastras-Martínez, R.C. Powell, J.E. Greene: Temperature dependence of the optical band gap of the metastable zincblende structure β-GaN, Phys. Rev. B50, 8433–8438 (1994)CrossRefGoogle Scholar
  28. 6.28
    S. Logothetidis, J. Petalas, M. Cardona, T.D. Moustakas: Optical properties and temperature dependence of the interband transitions of cubic and hexagonal GaN, Phys. Rev. B50, 18017, 18029 (1994)CrossRefGoogle Scholar
  29. 6.29
    O. Madelung, M. Schulz, H. Weiss (eds.): Landolt-Börnstein, Ser.III, Vol. 22 (Semiconductors), Subvol. a: Intrinsic properties of group-IV elements, III–V, II–VI and I–VII compounds (Springer, Berlin, Heidelberg 1987)Google Scholar
  30. 6.30
    R.B. Schoolar, J.R. Dixon: Optical constant of lead sulfide in the fundamental absorption edge region. Phys. Rev. 137, A667–670 (1965)CrossRefGoogle Scholar
  31. 6.31
    G.W. Gobeli, H.Y. Fan: Semiconductor Research, Second Quartertly Rept., Purdue University, Lafayette, IN (1956), as reproduced in [6.25]Google Scholar
  32. 6.32
    E.J. Johnson: Absorption near the fundamental edge, optical properties of III–V compounds. Semiconductor and Semimetals 3, 153–258 (Academic, New York 1967)Google Scholar
  33. 6.33
    G.G. MacFarlane, V. Roberts: Infrared absorption of germanium near the lattice edge. Phys. Rev. 97, 1714–1716 (1955); Infrared absorption of silicon near the lattice edge. ibid. 98, 1865–1866 (1955)CrossRefGoogle Scholar
  34. 6.34
    G.G. MacFarlane, T.P. McLean, J.E. Quarrington, V. Roberts: Fine structure in the absorption-edge spectrum of Ge. Phys. Rev. 108, 1377–1383 (1957)CrossRefGoogle Scholar
  35. 6.35
    M. Gershenzon, D.G. Thomas, R.E. Dietz: Radiative transitions near the band edge of GaP, in Proc. Int'l Conf. on the Physics of Semiconductors, ed. by A.C. Stickland (IOP, London 1962) p. 752–759Google Scholar
  36. 6.36
    S. Nikitine: Excitons, in Optical Properties of Solids, ed. by S. Nudelman, S.S. Mitra (Plenum, New York 1969) pp. 197–237CrossRefGoogle Scholar
  37. 6.37
    G.H. Wannier: The structure and electronic excitation levels in insulating crystals. Phys. Rev. 52, 191–197 (1937)CrossRefGoogle Scholar
  38. 6.38
    N.F. Mott: Conduction in polar crystals: II. The conduction band and ultra-violet absorption of alkali-halide crystals. Trans. Faraday Soc. 34, 500–506 (1938)CrossRefGoogle Scholar
  39. 6.39
    R.S. Knox: Theory of Excitons, Solid State Physics, Suppl.5, ed. by F. Seitz, D. Turnbull (Academic, New York 1963)Google Scholar
  40. 6.40
    D.L. Dexter, R.S. Knox: Excitons (Wiley, New York 1965)Google Scholar
  41. 6.41
    K. Cho (ed.): Excitons, Topics Curr. Phys., Vol. 14 (Springer, Berlin, Heidelberg 1974)Google Scholar
  42. 6.42
    J.J. Hopfield: Theory of contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112, 1555–1567 (1958)CrossRefGoogle Scholar
  43. 6.43
    Y. Toyozawa: On the dynamical behavior of an exciton. Suppl. Prog. Theor. Phys. 12, 111–140 (1959)CrossRefGoogle Scholar
  44. 6.44
    R.J. Elliott: Intensity of optical absorption by excitons. Phys. Rev. 108, 1384–1389 (1957)CrossRefGoogle Scholar
  45. 6.45
    M. Steube, K. Reimann, D. Fröhlich and S.J. Clarke: Free excitons with n = 2 in bulk GaN. Appl. Phys. Lett. 71, 948–949 (1997) B. Monemar: Optical Properties of GaN, in Semiconductors and Semimetals, Vol. 50 (Academic, N.Y., 1998) p. 305–363CrossRefGoogle Scholar
  46. 6.46
    A. Baldereschi, N.O. Lipari: Energy levels of direct excitons in semiconductors with degenerate bands. Phys. Rev. B 3, 439–450 (1971)CrossRefGoogle Scholar
  47. 6.47
    A. Baldereschi, N.O. Lipari: Spherical model of shallow acceptor states in semiconductors. Phys. Rev. B 8, 2697–2709 (1973)CrossRefGoogle Scholar
  48. 6.48
    S. Adachi: Physical Properties of III–V Semiconductor Compounds (Wiley, New York 1992)CrossRefGoogle Scholar
  49. 6.49
    B. Segall, D.T.F. Marple: Intrinsic exciton absorption, in Physics and Chemistry of II–VI Compounds, ed. by M. Aven, J.S. Prener (North-Holland, Amsterdam 1967) pp. 319–378Google Scholar
  50. 6.50
    M. Altarelli, N.O. Lipari: Exciton dispersion in semiconductors with degenerate bands. Phys. Rev. B 15, 4898–4906 (1977)CrossRefGoogle Scholar
  51. 6.51
    P.Y. Yu: Resonant Brillouin scattering of exciton polaritons. Comments Solid State Phys. 9, 37–48 (1979)Google Scholar
  52. 6.52
    J.J. Hopfield: Aspects of polaritons. J. Phys. Soc. Jpn., Suppl. 21, 77–88 (1966)CrossRefGoogle Scholar
  53. 6.53
    L.D. Landau, I.M. Lifshitz: Quantum Mechanics, Nonrelativistic Theory, 3rd edn. (Addison-Wesley, Reading, MA 1965) pp. 116–125 and 600–610Google Scholar
  54. 6.54
    M.D. Sturge: Optical Absorption of gallium arsenide between 0.6 and 2.75 eV. Phys. Rev. 127, 768–773 (1962)CrossRefGoogle Scholar
  55. 6.55
    P.W. Baumeister: Optical absorption of cuprous oxide. Phys. Rev. 121, 359–362 (1961)CrossRefGoogle Scholar
  56. 6.56
    Y. Petroff, P.Y. Yu, Y.R. Shen: Study of photoluminescence in Cu2O. Phys. Rev. B 12, 2488–2495 (1975)CrossRefGoogle Scholar
  57. 6.57
    Y. Petroff, M. Balkanski: Coulomb effects at saddle-type critical points in CdTe, ZnTe, ZnSe, and HgTe. Phys. Rev. B 3, 3299–3301 (1971)CrossRefGoogle Scholar
  58. 6.58
    J.P. Walter, M.L. Cohen, Y. Petroff, M. Balkanski: Calculated and measured reflectivity of ZnTe and ZnSe. Phys. Rev. B 1, 2661–2667 (1970)CrossRefGoogle Scholar
  59. 6.59
    E.O. Kane: Coulomb effects at saddle-type critical points. Phys. Rev. 180, 852–858 (1969)CrossRefGoogle Scholar
  60. 6.60
    S. Antoci, G.F. Nardelli: Evidence for a high sensitivity of Λ2–Λ1 resonant absorption structures on energy-band behavior for CdTe and ZnTe. Phys. Rev. B 6, 1311–1314 (1972)CrossRefGoogle Scholar
  61. 6.61
    S. Flügge, H. Marschall: Rechenmethoden der Quantentheorie (Springer, Berlin, Heidelberg 1952) p. 80Google Scholar
  62. 6.62
    J.C. Phillips: Excitons, in The Optical Properties of Solids, ed. by J. Tauc (Academic, New York 1966) pp. 155–184Google Scholar
  63. 6.63
    U. Fano: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)CrossRefGoogle Scholar
  64. 6.64
    W. Hanke, L.J. Sham: Many-particle effects in the optical spectrum of a semiconductor. Phys. Rev. B 21, 4656–4673 (1980)CrossRefGoogle Scholar
  65. 6.65
    N. Meskini, H.J. Mattausch, W. Hanke: Many-body effects in the absorption spectrum of a heteropolar crystal. Solid State Commun. 48, 807–809 (1983)CrossRefGoogle Scholar
  66. 6.66
    B. Velický, J. Sak: Excitonic effects in the interband absorption of semiconductors. Phys. Status Solidi 16, 147–157 (1966)CrossRefGoogle Scholar
  67. 6.67
    F.A. Jenkins, H.E. White: Fundamentals of Optics, 3rd edn. (McGraw-Hill, New York 1957) p. 472Google Scholar
  68. 6.68
    M. Born, K. Huang: Dynamical Theory of Crystal Lattices (Oxford Univ. Press, Oxford 1988, reprint of the original 1954 edition) pp. 228–238Google Scholar
  69. 6.69
    M. Hass: Lattice reflections, in Optical Properties of III–V Compounds, Semiconductors and Semimetals, Vol. 3 (Academic, New York 1967) pp. 3–16Google Scholar
  70. 6.70
    A. Debernardi: Phonon linewidth in III–V semiconductors from density functional perturbation theory. Phys. Rev B57, 12847–12858 (1998)CrossRefGoogle Scholar
  71. 6.71
    A. Debernardi: Anharmonic effects in the phonons of III–V semiconductors: first principles calculations. Solid State Commun. 113, 1–10 (2000)CrossRefGoogle Scholar
  72. 6.72
    H. Siegle, L. Eckey, A. Hoffmann, C. Thomsen, B.K. Meyer, D. Schikora, M. Hankeln, K. Lischka: Quantitative determination of hexagonal minority phase in GaN using Raman spectroscopy, Solid State Commun. 96, 943–949 (1995)CrossRefGoogle Scholar
  73. 6.73
    H.D. Fuchs, C.H. Grein, R.I. Devlin, J. Kuhl, M. Cardona: Anharmonic decay time, isotopic scattering time, and inhomogeneous line broadening of optical phonons in 70Ge, 76Ge and natural Ge crystals. Phys. Rev. B 44, 8633–8642 (1991)CrossRefGoogle Scholar
  74. 6.74
    R.J. Collins, H.Y. Fan: Infrared lattice absorption bands in germanium, silicon and diamond. Phys. Rev. 93, 674–678 (1954)CrossRefGoogle Scholar
  75. 6.75
    F.A. Johnson: Lattice absorption bands in silicon. Proc. Phys. Soc. (London) 73, 265–272 (1959)CrossRefGoogle Scholar
  76. 6.76
    M. Lax, E. Burstein: Infrared lattice absorption in ionic and homopolar crystals. Phys. Rev. 97, 39–52 (1955)CrossRefGoogle Scholar
  77. 6.77
    J.L. Birman: Space group selection rules: Diamond and zinc blende. Phys. Rev. 127, 1093–1106 (1962)CrossRefGoogle Scholar
  78. 6.78
    W.G. Spitzer: Multiphonon lattice absorption, in Optical Properties of III–V Compounds. Semiconductors and Semimetals 3, 17–69 (Academic, New York 1967)Google Scholar
  79. 6.79
    H. Bilz, R. Geik, K.F. Renk: Lattice vibrations and infrared absorption of germanium, silicon, and diamond, in Proc. Int'l Conf. on Lattice Dynamics, ed. by R.F. Wallis (Pergamon, Oxford 1963) p. 355–368Google Scholar
  80. 6.80
    A. Debernardi, M. Bernasconi, M. Cardona, M. Parrinello: Infrared absorption in α-Si from ab initio molecular dynamics. Appl. Phys. Lett. 71, 2692–2694 (1997)CrossRefGoogle Scholar
  81. 6.81
    J.C. Phillips: Covalent Bonding in Crystals, Molecules, and Polymers (Univ. Chicago Press, Chicago 1969)Google Scholar
  82. 6.82
    W.A. Harrison: Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover, New York 1989)Google Scholar
  83. 6.83
    S.K. Sinha: Phonons in semiconductors. CRC Crit. Rev. Solid State Sci. 3, 273–334 (1973)CrossRefGoogle Scholar
  84. 6.84
    S. de Gironcoli, S. Baroni, R. Resta: Piezoelectric properties of III–V semiconductors from first-principles linear-response theory. Phys. Rev. Lett. 62, 2853–2856 (1989)CrossRefGoogle Scholar
  85. 6.85
    J.A. Sanjurjo, E. López-Cruz, P. Vogl, M. Cardona: Dependence on volume of the phonon frequencies and their IR effective charges of several III–V semicondutors. Phys. Rev. B 28, 4579–4584 (1983)CrossRefGoogle Scholar
  86. 6.86
    P. Vogl: In Physics of Nonlinear Transport in Semiconductors, ed. by D.K. Ferry, J.R. Barker, C. Jacoboni (Plenum, New York 1980) pp. 75–116CrossRefGoogle Scholar
  87. 6.87
    R.D. King-Smith, D. Vanderbilt: Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993)CrossRefGoogle Scholar
  88. 6.88
    E. Anastassakis, M. Cardona: Phonons, strains, and pressure in semiconductors, in High Pressure in Semiconductor Physics II ed. by T. Suski and W. Paul (Academic, San Diego 1998) p. 196Google Scholar
  89. 6.89
    H. Ibach, H. Lüth: Solid-State Physics, 2nd edn. (Springer, Berlin, Heidelberg 1995) Chap. 9Google Scholar
  90. 6.90
    C. Kittel: Introduction to Solid State Physics, 7th edn. (Wiley, New York 1995)Google Scholar
  91. 6.91
    H.Y. Fan: Effects of free carries on the optical properties, in Optical Properties on III–V Compounds. Semiconductors and Semimetals 3, 405–419 (Academic, New York 1967)CrossRefGoogle Scholar
  92. 6.92
    J.R. Dixon: Optical absorption mechanism in InAs, in Proc. Int'l on the Physics of Semiconductors (Czech. Acad. Sci., Prague; and Academic, New York 1961) pp. 366–368Google Scholar
  93. 6.93
    R. Braunstein, E.O. Kane: The valence band structure of the III–V compounds. J. Phys. Chem. Solids 23, 1423–1429 (1962)CrossRefGoogle Scholar
  94. 6.94
    W.G. Spitzer, H.Y. Fan: Determination of optical constants and carrier effective mass of semicondutors. Phys. Rev. 106, 882–890 (1957)CrossRefGoogle Scholar
  95. 6.95
    G. Herzberg: Atomic Spectra and Atomic Structure (Dover, New York 1944)Google Scholar
  96. 6.96
    C. Jagannath, Z.W. Grabowski, A.K. Ramdas: Linewidth of the electronic excitation spectra of donors in silicon. Phys. Rev. B 23, 2023–2098 (1981)Google Scholar
  97. 6.97
    R.L. Aggarwal, A.K. Ramdas: Optical determination of the symmetry of the ground states of group-V donors in silicon. Phys. Rev. 140, A1246–1253 (1965)CrossRefGoogle Scholar
  98. 6.98
    T.M. Lifshits, F. Ya. Nad': Photoconductivity in germanium doped with group-V impurities at photon energies below the impurity ionization energy. Sov. Phys. — Dokl. 10, 532–533 (1965)Google Scholar
  99. 6.99
    K. Seeger: Semiconductor Physics, 5th edn., Springer Ser. Solid-State Sci., Vol. 40 (Springer, Berlin, Heidelberg 1991) pp. 6–70CrossRefGoogle Scholar
  100. 6.100
    E.E. Haller, W.L. Hansen: High resolution Fourier transform spectroscopy of shallow acceptors in ultra-pure germanium. Solid State Commun. 15, 687–692 (1974)CrossRefGoogle Scholar
  101. 6.101
    A.K. Ramdas, S. Rodriguez: Spectroscopy of the solid state analogues of the hydrogen atom: Donors and acceptors in semiconductors. Rep. Prog. Phys. 44, 1297–1387 (1981)CrossRefGoogle Scholar
  102. 6.102
    O.J. Glembocki, B.V. Shanabrook, N. Bottka, W.T. Beard, J. Comas: Photoreflectance characterization of interband transitions in GaAs/AlAs multiple quantum wells and modulation doped heterojunctions. Appl. Phys. Lett. 46, 970–972 (1985)CrossRefGoogle Scholar
  103. 6.103
    A. Frova, P. Handler: Electric field shift of the absorption edge in the space charge region of a Ge p-n junction, in Physics of Semiconductors, ed. by M. Hulin (Dunod, Paris 1964) p. 157–164Google Scholar
  104. 6.104
    B.O. Seraphin. R.B. Hess: Franz-Keldysh effect above the fundamental edge in germanium. Phys. Rev. Lett. 14, 138–140 (1965)CrossRefGoogle Scholar
  105. 6.105
    D.E. Aspnes: Modulation spectroscopy/electric field effects on the dielectric function of semiconductors, in Handbook of Semiconductors, ed. by M. Balkanski (North-Holland, Amsterdam 1980) Vol. 2, pp. 109–154Google Scholar
  106. 6.106
    F.H. Pollak, H. Shen: Modulation spectroscopy of semiconductors: Bulk/thin films, microstructures, surfaces/interfaces and devices. Mater. Sci. Eng. R 10, 275–374 (1993)CrossRefGoogle Scholar
  107. 6.107
    D.D. Sell. E.E. Stokowski: Modulated piezoreflectance and reflectance studies of GaAs, in Proc. 10th Int'l Conf. on the Physics of Semiconductors, ed. by S.P. Keller, C. Hensel, F. Stern (Nat'l Bureau of Standards, Springfield, VA 1970) pp. 417–422Google Scholar
  108. 6.108
    R.R.L. Zucca, Y.R. Shen: Wavelength-modulation spectra of some semiconductors. Phys. Rev. B 1, 2668–2676 (1970)CrossRefGoogle Scholar
  109. 6.109
    B.O. Seraphin, N. Bottka: Band structure analysis from electroreflectance studies. Phys. Rev. 145, 628–636 (1966)CrossRefGoogle Scholar
  110. 6.110
    S. Gopalan, P. Lautenschlager, M. Cardona: Temperature dependence of the shifts and broadenings of the critical points in GaAs. Phys. Rev. B 35, 5577–5584 (1987)CrossRefGoogle Scholar
  111. 6.111
    P.B. Allen, M. Cardona: Temperature dependence of the direct gap of Si and Ge. Phys. Rev. B 27, 4760–4769 (1983)CrossRefGoogle Scholar
  112. 6.112
    E. Matatagui, A. Thomson, M. Cardona: Thermoreflectance in semiconductors. Phys. Rev. 176, 954–960 (1968)CrossRefGoogle Scholar
  113. 6.113
    A. Gavini, M. Cardona: Modulated piezoreflectance in semiconductors. Phys. Rev. B 1, 672–682 (1970)CrossRefGoogle Scholar
  114. 6.114
    M. Abramowitz, I.A. Stegun: Handbook of Mathematical Functions, NBS Math. Ser. No. 44 (US GPO, Washington, DC 1970) Sect. 10Google Scholar
  115. 6.115
    K. Thamarlingham: Optical absorption in the presence of uniform electric field. Phys. Rev. 130, 2204–2206 (1963)CrossRefGoogle Scholar
  116. 6.116
    D.E. Aspnes: Electric field effects on the dielectric constant of solids. Phys. Rev. 153, 972–982 (1967)CrossRefGoogle Scholar
  117. 6.117
    W. Franz: Influence of an electric field on an optical absorption edge (in German). Z. Naturforsch. 13a, 484–489 (1958)Google Scholar
  118. 6.118
    L.V. Keldysh: Effect of a strong electric field on the optical properties of insulating crystals. Sov. Phys. — JETP 34, 788–790 (1958)Google Scholar
  119. 6.119
    J.P. Estrera, W.M. Duncan, R. Glosser: Complex Airy analysis of photore-flectance spectra for III–V semiconductors. Phys. Rev. B 49, 7281–7294 (1994)CrossRefGoogle Scholar
  120. 6.120
    D.E. Aspnes, A.A. Studna: Schottky barrier electroreflectance: Application to GaAs. Phys. Rev. B 7, 4605–4625 (1973)CrossRefGoogle Scholar
  121. 6.121
    D.E. Aspnes. Schottky barrier electroreflectance of Ge: Non-degenerate and optically degenerate critical points. Phys. Rev. B 12, 2297–2310 (1975)CrossRefGoogle Scholar
  122. 6.122
    M. Kuball: Effects of hydrogen exposure, doping, and electric fields on the properties of GaAs surfaces. Dissertation, University of Stuttgart (1995)Google Scholar
  123. 6.123
    E. Gharhamani, D.J. Moss, J.E. Sipe: Linear and nonlinear optical properties of (GaAs)m/(AlAs)n superlattices. Phys. Rev. B 43, 9269–9272 (1991)CrossRefGoogle Scholar
  124. 6.124
    D.F. Blossey: Wannier excitons in an electric field: II. Electroabsorption in direct-band-gap solids. Phys. Rev. 3, 1382–1391 (1971)CrossRefGoogle Scholar
  125. 6.125
    J.S. Kline, F.H. Pollak, M. Cardona: Electroreflectance in the Ge-Si alloys. Helv. Phys. Acta 41, 968–976 (1968)Google Scholar
  126. 6.126
    M. Cardona, K.L. Shaklee, F.H. Pollak: Electroreflectance at a semiconductor-electrolyte interface. Phys. Rev. 154, 696–720 (1967)CrossRefGoogle Scholar
  127. 6.127
    J.G. Gay: Screening of excitons in semiconductors. Phys. Rev. B 4, 2567–2575 (1971)CrossRefGoogle Scholar
  128. 6.128
    C. Parks, A.K. Ramdas, S. Rodriguez, K.M. Itoh, E.E. Haller: Electronic band structure of isotopically pure Ge: Modulated transmission and reflectivity study. Phys. Rev. B 49, 14244–14250 (1994)CrossRefGoogle Scholar
  129. 6.129
    S. Zollner, M. Cardona, S. Gopalan: Isotope and temperature shifts of direct and indirect band gaps in diamond-type semiconductors. Phys. Rev. B 45, 3376–3385 (1992)CrossRefGoogle Scholar
  130. 6.130
    X. Yin, X. Guo, F.H. Pollak, Y. Chan, P.A. Mantau, P.D. Kirchner, G.D. Petit, J.M. Woodal: Photoreflectance study of the surface Fermi level at a (001) n-and p-type GaAs surface. J. Vac. Sci. Technol. A 10, 131–136 (1992)CrossRefGoogle Scholar
  131. 6.131
    I. Kamiya, D.E. Aspnes, L.T. Florez, J.P. Harbison: Reflectance difference spectroscopy on (001) GaAs surfaces in ultrahigh vacuum. Phys. Rev. B 46, 15894–15904 (1992)CrossRefGoogle Scholar
  132. 6.132
    W. Richter: Optical in-situ control during MOVPE and MBE growth. Philos. Trans. R. Soc. (London) A 344, 453–467 (1993)CrossRefGoogle Scholar
  133. 6.133
    M. Cardona, F.H. Pollak, K.L. Shaklee: Electroreflectance in semiconductors. J. Phys. Soc. Jpn. Suppl. 21, 89–94 (1966)CrossRefGoogle Scholar
  134. 6.134
    D.E. Aspnes. A.A. Studna: Anisotropies in the above-band-gap optical spectra of cubic semiconductors. Phys. Rev. Lett. 54, 1956–1959 (1985)CrossRefGoogle Scholar
  135. 6.135
    W.L. Mochan, R.G. Barrera: Local field on the surface conductivity of adsorbed overlayers. Phys. Rev. Lett. 56, 2221–2224 (1986)CrossRefGoogle Scholar
  136. 6.136
    Y. Chang. D.E. Aspnes: Theory of the dielectric function anisotropy of (001) GaAs (2×1) surface. Phys. Rev. B 41, 12002–12012 (1990)CrossRefGoogle Scholar
  137. 6.137
    D.E. Aspnes: Observation and analysis of epitaxial growth with reflectance-difference spectroscopy. J. Electron. Mater. B 30, 109–119 (1995)Google Scholar
  138. 6.138
    L.X. Benedict, T. Wethkamp, K. Wilmers, C. Cobet, N. Esser, EL. Shirley, W. Richter and M. Cardona: Dielectric function of wurtzite GaN and AlN thin films. Sol. Stat. Commun. 102, 129 (1999)CrossRefGoogle Scholar
  139. 6.139
    C. Cobet, N. Esser, J.T. Zettler, W. Richter, P. Waltereit, O. Brandt, K.H. Ploog, N.V. Edwards, O.P.A. Lindquist and M. Cardona: Optical properties of wurtzite AlxGa1−xN (x < 0.1) parallel and perpendicular to the c axis. Phys. Rev. B 64, 16503–16508 (2001).CrossRefGoogle Scholar
  140. 6.140
    D.R. Penn: Wavenumber-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)CrossRefGoogle Scholar
  141. 6.141
    M. Cardona: Infrared dielectric constants and ultraviolet optical properties of solids with diamond, zincblende, wurtzite and rocksalt structures. J. Appl. Phys. 36, 2181–2186 (1965)CrossRefGoogle Scholar
  142. 6.142
    P.Y. Yu, M. Cardona: Temperature coefficient of the refractive index of zincblende and diamond-type semiconductors. Phys. Rev. B 2, 3193–3197 (1970)CrossRefGoogle Scholar
  143. 6.143
    M. Cardona: Fresnel reflection and surface plasmons. Am. J. Phys. 39, 1277 (1971)CrossRefGoogle Scholar
  144. 6.144
    M. Cardona: Electronic optical properties of solids, in Solid State Physics, Nuclear Physics and Particle Physics, ed. by I. Saavedra (Benjamin, New York 1968) pp. 737–816Google Scholar
  145. 6.145
    P. Wickbold, E. Anastassakis, R. Sauer, M. Cardona: Raman phonon piezospec-troscopy in GaAs: Infrared measurements. Phys. Rev. B 35, 1362–1368 (1987)CrossRefGoogle Scholar
  146. 6.146
    J.F. Nye: Physical Properties of Crystals (Oxford Univ. Press, Oxford 1969) L. A. Shuvalov (ed.): Modern Crystallography IV, Springer Ser. Solid-State Sci., Vol. 37 (Springer, Berlin, Heidelberg 1988)Google Scholar
  147. 6.147
    P. Lautenschlager, P.B. Allen, M. Cardona: Temperature dependence of band gaps in Si and Ge. Phys. Rev. B 31, 2163–2171 (1985)CrossRefGoogle Scholar
  148. 6.148
    Y.R. Shen: The Principles of Nonlinear Optics (Wiley, New York 1984) pp. 86–93Google Scholar
  149. 6.149
    J.A. Van Vechten, M. Cardona, D.E. Aspnes, R.M. Martin: Theory of the 3rd-order susceptibility, in Proc. 10th Int'l Conf. on the Physics of Semiconductors, ed. by S.P. Keller, C. Hensel, F. Stern (Nat'l Bureau of Standards, Springfield, VA 1970) pp. 82–86Google Scholar

General Reading

  1. Azzam R. M. A., N. M. Bashara: Ellipsometry and Polarized Light (North-Holland, Amsterdam 1977)Google Scholar
  2. Bassani F.: Electronic States and Optical Transitions in Solids (Pergamon, London 1975)Google Scholar
  3. Burstein E.: Atomic Structure and Properties of Solids (Academic, New York 1972)Google Scholar
  4. Greenaway D., G. Harbeke: Optical Properties and Band Structure of Semiconductors (Pergamon, London 1968)Google Scholar
  5. Ill'inskii Yu.A., L.V. Keldysh: Electromagnetic Response of Material Media (Plenum, New York 1994)CrossRefGoogle Scholar
  6. Kalt H.: Optical Properties of III–V Semiconductors, Springer Ser. Solid-State Sci., Vol. 120 (Springer, Berlin, Heidelberg 1996)CrossRefGoogle Scholar
  7. Landau L., I. M. Lifshitz: The Classical Theory of Fields (Addison-Wesley, Reading, MA 1958)Google Scholar
  8. Pollak F. H., H. Shen: Modulation Spectroscopy of Semiconductors, Bulk, Thin Film, Microstructures, Surfaces/Interfaces and Devices. Mater. Sci. Eng. R 10, 275–374 (1993)CrossRefGoogle Scholar
  9. Palik E. A.: Handbook of Optical Constants (Academic, Orlando, FL 1985)Google Scholar
  10. Pankove J.: Optical Processes in Semiconductors (Dover, New York 1971)Google Scholar
  11. Tauc J.: The Optical Properties of Solids (Academic, New York 1966)Google Scholar
  12. Willardson R. K., A. C. Beer (eds.): Optical Properties of III–V Compounds, Semiconductors and Semimetals, Vol. 3 (Academic, New York 1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Peter Y. Yu
    • 1
  • Manuel Cardona
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Max-Planck-Institut für FestkörperforschungStuttgartGermany

Personalised recommendations