Advertisement

Electronic Properties of Defects

  • Peter Y. Yu
  • Manuel Cardona
Part of the Graduate Texts in Physics book series (GTP)

Summary

This chapter dealt with the study of the electronic properties of defects in semiconductors because electrically active defects play an important role in the operation of many semiconductor devices. Since defects come in many different forms we restricted our discussions to point defects only. These are separated into donors and acceptors and further divided into shallow or hydrogenic centers and deep centers. For shallow centers we introduced the effective mass approximation for calculating their energies and wave functions. Properties of shallow centers were shown to be very similar to those of the hydrogen atom except for effective mass anisotropy and other corrections arising from the host crystal lattice. Hence energy levels of shallow centers are sometimes referred to as hydrogenic levels. Many defect centers cannot be understood within this approximation and they are referred to as deep centers. Properties of deep centers are often determined by potentials, localized within one unit cell, known as central cell corrections. These localized potentials are difficult to handle. We have, therefore, presented only a rather rudimentary Green’s functions approach to calculating deep center energies. This approach was applied to explain the chemical trends of deep levels in tetrahedrally bonded semiconductors and to the special case of isovalent (substitutional nitrogen) impurities in GaAsP alloys. A very serious limitation of our approach is the neglect of lattice relaxations, which are often associated with deep centers.

Keywords

Envelope Function Shallow Donor Conduction Band Minimum Bloch Function Deep Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 4

  1. 4.1
    G. Wannier: Elements of Solid State Theory (Cambridge Univ. Press, Cambridge 1959), for discussions of Wannier functionsGoogle Scholar
  2. 4.2
    W. Kohn: Shallow impurity states in silicon and germanium. Solid State Physics 5, 257–320 (Academic, New York 1957)Google Scholar
  3. 4.3
    J.M. Ziman: Principles of the Theory of Solids, 2nd edn (Cambridge Univ. Press, Cambridge 1972), for discussion of the effective-mass approximation, see Chap. 6, pp. 147–176CrossRefGoogle Scholar
  4. 4.4
    R.K. Watts: Point Defects in Crystals (Wiley-Interscience, New York 1977)Google Scholar
  5. 4.5
    N. Chand, T. Henderson, J. Klem, W.T. Masselink, R. Fischer, Y.-C. Chang, H. Morkoç: Comprehensive analysis of Si-doped AlxGa1−xAs (x=0 to 1): Theory and experiment. Phys. Rev. B 30, 4481–4492 (1984)CrossRefGoogle Scholar
  6. 4.6
    M. Mizuta, M. Tachikawa, H. Kukimoto, S. Minomura: Direct evidence for the DX center being a substitutional donor in AlGaAs alloy system. Jpn. J. Appl. Phys. 24, L143–146 (1985)CrossRefGoogle Scholar
  7. 4.7
    D.J. Chadi, K.J. Chang: Energetics of DX-center formation in GaAs and AlxGa1−xAs alloys. Phys. Rev. 39, 10063–10074 (1989)CrossRefGoogle Scholar
  8. 4.8
    J. Dabrowski, M. Scheffler: Defect metastability in III–V compounds. Mater. Sci. Forum 83–87, 735–750 (1992)CrossRefGoogle Scholar
  9. 4.9
    W. Kohn, J.M. Luttinger: Theory of donor levels in silicon. Phys. Rev. 97, 1721 (1955); Theory of donor states in silicon. ibid. 98, 915–922 (1955)CrossRefGoogle Scholar
  10. 4.10
    R.A. Faulkner: Higher donor excited states for prolate-spheroid conduction bands: A re-evaluation of silicon and germanium. Phys. Rev. 184, 713–721 (1969)CrossRefGoogle Scholar
  11. 4.11
    S. Pantelides, C.T. Sah: Theory of localized states in semiconductors. I. New results using an old method. Phys. Rev. B 10, 621–637 (1974) and II. The pseudo impurity theory applications to shallow and deep donors in silicon. ibid. 638–658 (1974)CrossRefGoogle Scholar
  12. 4.12
    N. Lipari, A. Baldereschi: Interpretation of Acceptor Spectra in Semiconductors. Solid State Commun. 25, 665–668 (1978)CrossRefGoogle Scholar
  13. 4.13
    W. Kohn. D. Schechter: Theory of acceptor levels in germanium. Phys. Rev. 99, 1903–1904 (1955)CrossRefGoogle Scholar
  14. 4.14
    A. Baldereschi, N.O. Lipari: Spherical model of shallow acceptor states in semiconductors. Phys. Rev. B 8, 2697–2709 (1973)CrossRefGoogle Scholar
  15. 4.15
    A. Baldereschi, N.O. Lipari: Cubic contributions to the spherical model of shallow acceptor states. Phys. Rev. B 9, 1525–1539 (1974)CrossRefGoogle Scholar
  16. 4.16
    N.O. Lipari, A. Baldereschi: Interpretation of acceptor spectra in semiconductors, Solid State Commun. 25, 665, 668 (1978)CrossRefGoogle Scholar
  17. 4.17
    M. Willatzen, M. Cardona, N. E. Christensen: Spin-orbit coupling parameters and g-factors of II–VI zincblende materials. Phys. Rev. B 51, 17992–17994 (1995)CrossRefGoogle Scholar
  18. 4.18
    M.A. Hasse, J. Qiu, J. M. DePuydt, H. Cheng: Blue-green laser diode. Appl. Phys. Lett. 59, 1272–1274 (1991)CrossRefGoogle Scholar
  19. 4.19
    H. Jeon, J. Ding, W. Patterson, A.V. Nurmikko, W. Xie, D.C. Grillo, M. Kobayashi, R. L. Gunshor: Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells. Appl. Phys. Lett. 59, 3619–3621 (1991)CrossRefGoogle Scholar
  20. 4.20
    J. Serrano, M. Cardona, T. Ruf: Spin-orbit splitting of acceptor-related states, Solid State Commun. 113, 411–414 (2000)CrossRefGoogle Scholar
  21. 4.21
    J. Serrano, A. Wysmolek, T. Ruf, M. Cardona: Spin-orbit splitting of acceptors in Si and C, Physica B273–274, 640–644 (1999)Google Scholar
  22. 4.22
    S. Pantelides: The electronic structure of impurity and defect states in semiconductors. Rev. Mod. Phys. 50, 797–858 (1978)CrossRefGoogle Scholar
  23. 4.23
    P.M. Mooney: Deep donor levels (DX centers) in III–V semiconductors. J. Appl. Phys. 67, R1–26 (1990)CrossRefGoogle Scholar
  24. 4.24
    N.F. Mott: Metal-Insulator Transition (Taylor and Francis, London 1990) p. 76Google Scholar
  25. 4.25
    D.J. Chadi: Doping in ZnSe, ZnTe, MgSe, and MgTe wide-band-gap semiconductors. Phys. Rev. Lett. 72, 534–537 (1994)CrossRefGoogle Scholar
  26. 4.26
    E.N. Economou: Green's Functions in Quantum Physics, 2nd edn., Springer Ser. Solid-State Sci., Vol. 7 (Springer, Berlin, Heidelberg 1983) pp. 97–125Google Scholar
  27. 4.27
    M. Lannoo, J. Bourgoin: Point Defects in Semiconductors I, Theoretical Aspects, Springer Ser. Solid-State Sci., Vol. 22 (Springer, Berlin, Heidelberg (1981) pp. 68–152Google Scholar
  28. 4.28
    P.A. M. Dirac: The Principles of Quantum Mechanics (Oxford Univ. Press, Oxford 1967) pp. 58–61Google Scholar
  29. 4.29
    H.P. Hjalmarson, P. Vogl, D. J. Wolford, J.D. Dow: Theory of substitutional deep traps in covalent semiconductors. Phys. Rev. Lett. 44, 810–813 (1980)CrossRefGoogle Scholar
  30. 4.30
    J.C. Phillips: Covalent Bonding in Crystals, Molecules, and Polymers (Univ. Chicago Press, Chicago 1969) p. 232, Table E. 1Google Scholar
  31. 4.31
    R.A. Faulkner: Toward a theory of isoelectronic impurities in semiconductors. Phys. Rev. 175, 991–1009 (1968)CrossRefGoogle Scholar
  32. 4.32
    D.G. Thomas, J. J. Hopfield: Isoelectronic traps due to nitrogen in GaP. Phys. Rev. 150, 680–703 (1966)CrossRefGoogle Scholar
  33. 4.33
    D.J. Wolford, J. A. Bradley, K. Fry, J. Thompson: The nitrogen isoelectronic trap in GaAs, in Physics of Semiconductors 1984, ed. by J.D. Chadi, W. A. Harrison (Springer, New York 1984) pp. 627–630Google Scholar
  34. 4.34
    E. Cohen, M.D. Sturge: Excited states of excitons bound to nitrogen pairs in GaP. Phys. Rev. B 15, 1039–1051 (1977)CrossRefGoogle Scholar
  35. 4.35
    W.Y. Hsu, J.D. Dow, D. J. Wolford, B.G. Streetman: Nitrogen isoelectronic trap in GaAs1−xPx. II. Model calculation of the electronic states NΓ and NX at low temperature. Phys. Rev. B 16, 1597–1615 (1977)CrossRefGoogle Scholar
  36. 4.36
    S. Pantelides (ed.): Deep Centers in Semiconductors, A State of the Art Approach (Gordon and Breach, New York 1986) Chaps. 1 and 7Google Scholar
  37. 4.37
    A. Messiah: Quantum Mechanics (North-Holland, Amsterdam 1961), pp. 1054–1060Google Scholar

General Reading

  1. Economou E.N.: Green's Functions in Quantum Physics, 2nd edn., Springer Ser. Solid-State Sci., Vol. 7 (Springer, Berlin, Heidelberg 1983)Google Scholar
  2. Lannoo M., J. Bourgoin: Point Defects in Semiconductors I, Theoretical Aspects, Springer Ser. Solid-State Sci., Vol. 22 (Springer, Berlin, Heidelberg 1981)Google Scholar
  3. Pantelides S.: The Electronic Structure of Impurity and Defect States in Semiconductors. Rev. Mod., Phys. 50, 797–858 (1978)CrossRefGoogle Scholar
  4. Pantelides S. (ed.): Deep Centers in Semiconductors, A State of the Art Approach (Gordon and Breach, New York 1986)Google Scholar
  5. Schubert E. F.: Doping in III–V Semiconductors (Cambridge Univ. Press, Cambridge 1993)CrossRefGoogle Scholar
  6. Wannier G.: Elements of Solid State Theory (Cambridge Univ. Press, Cambridge 1959), for discussions of Wannier functionsGoogle Scholar
  7. Watts R. K.: Point Defects in Crystals (Wiley-Interscience, New York 1977)Google Scholar
  8. Ziman J. M.: Principles of the Theory of Solids, 2nd edn. (Cambridge Univ. Press, Cambridge 1972), for discussions of the effective-mass approximationCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Peter Y. Yu
    • 1
  • Manuel Cardona
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Max-Planck-Institut für FestkörperforschungStuttgartGermany

Personalised recommendations