Advertisement

Materials Issues for High-k Gate Dielectric Selection and Integration

  • R.M. Wallace
  • G.D. Wilk
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 16)

Keywords

Atomic Layer Deposition Gate Dielectric Apply Physic Letter Gate Electrode Metal Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 9.1.
    Afanas'ev VV, Stesmans A, Chen F, Shi X, Campbell SA (2002) “Internal photoemission of electrons and holes from (100)Si into HfO2,” Applied Physics Letters 81:1053–5CrossRefGoogle Scholar
  2. 9.2.
    Alam MA, Green ML (2003) “A mathematical description of atomic layer deposition, and its application to the nucleation and growth of HfO2 gate dielectric layers,” unpublishedGoogle Scholar
  3. 9.3.
    Barin I, Knacke O (1973) “Thermochemical Properties of Inorganic Substances” (Springer-Verlag, Berlin)Google Scholar
  4. 9.4.
    Beyers R (1984) “Thermodynamic considerations in refractory metalsilicon-oxygen systems” J. Applied Physics 56:147–52CrossRefGoogle Scholar
  5. 9.5.
    Bevan MJ, Visokay MR, Chambers JJ, Rotondaro ALP, Bu H, Shanware A, Mercer DE, Laaksonen RT, Colombo L (2001) “Comparative Study Of High-K CVD Films of Hf and Zr Silicate for CMOS Devices” as discussed at the IEEE Semiconductor Interface Specialists Conference, Washington D.C.Google Scholar
  6. 9.6.
    Busch BW, Kwo J, Hong M, Mannaerts JP, Sapjeta BJ, Schulte WH, Garfunkel E, Gustafson T (2001) “Interface reactions of high-κ Y2O3 gate oxides with Si,” Applied Physics Letters 79:2447–9CrossRefGoogle Scholar
  7. 9.7.
    Busch BW, Pluchery O, Chabal YJ, Muller DA, Opila RL, Kwo J, Garfunkel E (2002) “Materials Characterization of Alternative Gate Dielectrics” Materials Research Society Bulletin 27:206–211Google Scholar
  8. 9.8.
    Callagari A, Cartier E, Gribelyuk M, Okorn-Schmidt H, Zabel T (2001) “Physical and electrical characterization of Hafnium oxide and Hafnium silicate sputtered films,” Journal of Applied Physics 90:6466CrossRefGoogle Scholar
  9. 9.9.
    Cartier E (2002) “Emerging challenges in the development of high-e gate dielectrics for CMOS applications,” Proceedings of the AVS 3rd International Conference on Microelectronics and Interfaces, February 11–14, Santa Clara, CA, pp. 119–22Google Scholar
  10. 9.10.
    Chambers JJ, Parsons GN (2000) “Yttrium silicate formation on silicon: Effect of silicon preoxidation and nitridation on interface reaction kinetics,” Applied Physics Letters 77:2385–7CrossRefGoogle Scholar
  11. 9.11.
    Chang JP, Lin YS, Berger S, Kepton A, Bloom R, Levy S (2001) “Ultrathin zirconium oxide films as alternative gate dielectrics,” J. Vacuum Science and Technology B19:2137–43CrossRefGoogle Scholar
  12. 9.12.
    Chatterjee A, Rodder M, Chem I-C (1998) “A Transistor Performance Figure-of-Merit Including the Effect of Gate Resistance and its Application to Scaling to Sub-0.25-µm CMOS Logic Technologies”, IEEE Transactions on Electron Devices 45:1246–52CrossRefGoogle Scholar
  13. 9.13.
    Chatterjee A, Chapman RA, Joyner K, Otobe M, Hattangady S, Bevan M, Brown GA, Yang H, He Q, Rogers D, Fang SJ, Kraft R, Rotondaro ALP., Terry M, Brennan K, Aur SW, Hu JC, Tsai H-L, Jones P, Wilk G, Aoki M, Rodder M, Chen I-C (1998) “CMOS Metal Replacement Gate Transistors using Tantalum Pentoxide Gate Insulator,” Technical Digest of the International Electron Devices Meeting, pp. 777–80Google Scholar
  14. 9.14.
    Chen PJ, Cartier E, Carter RJ, Kauerauf T, Zhao C, Petry J, Cosnier V, Xu Z, Kerber A, Tsai W, Young E, Kubicek S, Caymax M, Vandervorst W, DeGendt S, Heyns M, Copel M, Besling W, Bajolet P, Maes J (2002) “Thermal Stability and Scalability of Zr-Aluminate-Based High-K Gate Stacks,” Symposium on VLSI Technology Technical Digest of Papers, pp. 192–3Google Scholar
  15. 9.15.
    Cheng B, Cao M, Rao R, Inani A, Voorde P, Greene W, Stork J, Yu Z, Zeitzoff P, Woo J (1999) “The Impact of High-Gate Dielectrics and Metal Gate Electrodes on Sub-100 nm MOSFET's”, IEEE Transactions Electron Devices 46:1537–44CrossRefGoogle Scholar
  16. 9.16.
    Cho MH, Roh YS, Whang CN, Jeong K, Choi HJ, Nam SW, Ko DH, Lee JH, Lee NI, Fujihara K (2002) “Dielectric characteristics of Al2O3-HfO2 nanolaminates on Si(100),” Applied Physics Letters 81:1071–3CrossRefGoogle Scholar
  17. 9.17.
    Copel M, Cartier E, Ross FM (2001) “Formation of a stratified lanthanum silicate dielectric by reaction with Si(001),” Applied Physics Letters 78:16079Google Scholar
  18. 9.18.
    De I, Johri D, Srivastava A, Osburn CM (2000) “Impact of gate workfunction on device performance at the 50 nm technology node”, Solid-State-Electronics 44, no.6, pp. 1077–80CrossRefGoogle Scholar
  19. 9.19.
    Fischetti MV, Nuemayer DA, Cartier EA (2001) “Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-k insulator: The role of remote phonon scattering,” Journal of Applied Physics 90:4587–4608CrossRefGoogle Scholar
  20. 9.20.
    Frank D, Taur Y, Wong H-S P(1998) “Generalized scale length for two-dimensional effects in MOSFETs,” IEEE Electron Device Letters 19:385–7CrossRefGoogle Scholar
  21. 9.21.
    Frank MM, Chabal YJ, Wilk GD (2003) “Nucleation and interface formation mechanisms in Al2O3 atomic layer deposition,” unpublishedGoogle Scholar
  22. 9.22.
    Gopalan S, Onishi K, Nieh R, Kang CS, Choi R, Cho HJ, Krishnan S, Lee JC (2002) “Electrical and physical characteristics of ultrathin hafnium silicate films with polycrystalline silicon and TaN gates,” Applied Physics Letters 80:4416–8CrossRefGoogle Scholar
  23. 9.23.
    Gougousi T, Jason Kelly M, Parsons GN (2002) “The role of the OH species in high-k polycrystalline silicon gate electrode interface reactions,” Applied Physics Letters 80:4419–21CrossRefGoogle Scholar
  24. 9.24.
    Green ML, Gusev EP, Degraeve R,. Garfunkel EL, (2001) “Ultrathin (<4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,” Journal of Applied Physics 90:2057–121Google Scholar
  25. 9.25.
    Green ML, Ho MY, Busch B, Wilk GD, Sorsch T, Conard T, Brijs B, Vandervorst W, Räisänen PI, Muller D, Bude M, Grazul J (2002) “Nucleation and growth of atomic layer deposited HfO2 gate dielectric layers on chemical oxide (Si-O-H) and thermal oxide (SiO2 or Si-O-N) underlayers,” Journal of Applied Physics 92:7168–74CrossRefGoogle Scholar
  26. 9.26.
    Gusev EP, Buchanan DA, Cartier E, Kumar A, DiMaria D, Guha S, Callegari A, Zafar S, Jamison PC, Nuemayer DA, Copel M, Gribulyek MA, Okorn-Schmidt H, D'Emic C, Kozlowski P, Chan K, Bojarczuk N, Ragnarsson L-A, Ronsheim P, Rim K, Fleming RJ, Mocuta A, Ajmera A (2001) “Ultrathin high-k gate stacks for advanced CMOS devices,” Technical Digest of the International Electron Devices Meeting, p. 451–4Google Scholar
  27. 9.27.
    Guha S, Cartier E, Gribelyuk MA, Bojarczuk NA, Copel MC (2000) “Atomic beam deposition of lanthanum-and yttrium-based oxide thin films for gate dielectrics,” Applied Physics Letters 77:2710–12CrossRefGoogle Scholar
  28. 9.28.
    Guha S, Gusev EP, Okorn-Schmidt H, Copel MC, Ragnarsson LÅ, Bojarczuk NA, Ronsheim P (2002) “High temperature stability of Al2O3 dielectrics in Si: Interfacial metal diffusion and mobility degradation,” Applied Physics Letters 81:2956–8CrossRefGoogle Scholar
  29. 9.29.
    Harada Y, Niwa M, Lee S, Kwong DL (2002) “Specific Structural Factors Influencing on Reliability of CVD-HfO2,” Symposium on VLSI Technology Technical Digest of Papers, pp. 26–7Google Scholar
  30. 9.30.
    Hergenrother JM, Wilk GD, Nigam T, Klemens FP, Monroe D, Silverman PJ, Sorsch TW, Busch B, Green ML, Baker MR, Boone T, Bude MK, Ciampa NA, Ferry EJ, Fiory AT, Hillenius SJ, Jacobson DC, Johnson RW, Kalavade P, Keller RC, King CA, Kornblit A, Krautter HW, Lee JTC, Mansfield WM, Miner JF, Morris MD, Oh SH, Rosamilia JM, Sapjeta BJ, Short K, Steiner K, Muller DA, Voyles PM, Grazul JL, Shero EJ, Givens ME, Pomarede C, Mazanec M, Werkhoven C (2001) “50 nm vertical replacement-gate (VRG) nMOSFETs with ALD HfO2 and Al2O3 gate dielectrics,” Technical Digest of the International Electron Devices Meeting, p. 51–4Google Scholar
  31. 9.31.
    Ho MY, Gong H, Wilk GD, Busch BW, Green ML, Lin WH, See A, Lahiri SK, Loomans ME, Räisänen PI, Gustafsson T (2002) “Suppressed crystallization of Hf-based gate dielectrics by controlled addition of Al2O3 using atomic layer deposition,” Applied Physics Letters 81:4218–20CrossRefGoogle Scholar
  32. 9.32.
    Ho MY, Gong H, Wilk GD, Busch BW, Green ML, Voyles PM, Muller DA, Bude M, Lin WH, See A, Loomans ME, Lahiri SK, Räisänen PI (2003) “Morphology and crystalization kinetics in HfO2 thin films grown by atomic layer deposition,” Journal of Applied Physics 93:1477–81CrossRefGoogle Scholar
  33. 9.33.
    Hobbs C, Tseng H, Reid K, Taylor B, Dip L, Hebert L, Garcia R, Hegde R, Grant J, Gilmer D, Franke A, Dhandapani V, Azrak M, Prabhu L, Rai R, Bagchi S, Conner J, Backer S, Dumbuya F, Nguyen B, Tobin P (2001) “80 nm Poly-Si Gate CMOS with HfO2 Gate Dielectric,” Technical Digest of the International Electron Devices Meeting, p. 651Google Scholar
  34. 9.34.
    Hori T (1997) “Gate Dielectrics and MOS ULSIs,” Springer Series in Electronics and Photonics, 34, Springer-Verlag, BerlinGoogle Scholar
  35. 9.35.
    Houssa M,. Afanas'ev VV, Stesmans A, Heyns MM (2000) “Variation in the fixed charge density of SiOx/ZrO2 gate dielectric stacks during postde-position oxidation,” Applied Physics Letters 77:1885–7CrossRefGoogle Scholar
  36. 9.36.
    Hubbard KJ, Schlom DG (1996) “Thermodynamic Stability of Oxides in Direct Contact with Silicon” J. Materials Research 11:2757Google Scholar
  37. 9.37.
    Iwai H, Momose HS, Ohmi S (2000) in The Physics and Chemistry of SiO2 and the Si-SiO2 interface-4, H.Z. Massoud, I.J.R. Baumvol, M. Hirose and E.H. Poindexter, Eds., Proceedings of the Electrochemical Society 2000-2:3Google Scholar
  38. 9.38.
    Jeon S, Choi CJ, Seong TY, Hwang H (2001) “Electrical characteristics of ZrOxNy prepared by NH3 annealing of ZrO2” Applied Physics Letters 79:245–7CrossRefGoogle Scholar
  39. 9.39.
    Kang CS, Cho HJ, Onishi K, Choi R, Nieh R, Goplan S, Krishnan S, Lee JC (2002) “Improved Thermal Stability and Device Performance of Ultra-Thin (EOT<10Å) Gate Dielectric MOSFETs by Using Hafnium Oxynitride (HfOxNy),” Symposium on VLSI Technology Technical Digest of Papers, pp. 146–7Google Scholar
  40. 9.40.
    Kasap SO (2002) Principles of Electrical Engineering Materials and Devices, McGraw-Hill, New YorkGoogle Scholar
  41. 9.41.
    Kerber A, Cartier E, Pantisano L, Degraeve R, Kauerauf T, Kim Y, Hou A, Groeseneken G, Maes HE, Schwalke U (2003) “Origin of the threshold voltage instability in SiO2//HfO2 dual layer gate dielectrics,” IEEE Electron Device Letters 24:87–9CrossRefGoogle Scholar
  42. 9.42.
    Kim H, NcIntyre P, Saraswat K (2003) “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition,” Applied Physics Letters 82:106–108CrossRefGoogle Scholar
  43. 9.43.
    King TJ, McVittie JP, Saraswat KC, Pfiester JR (1994) “Electrical properties of heavily doped polycrystalline silicon-germanium films,” IEEE Transactions on Electron Devices 41:228CrossRefGoogle Scholar
  44. 9.44.
    King YC, Hu C, Fujioka H, Kamohara S (1998) “Small signal electron charge centroid model for quantization of inversion layer in a metal-on-insulator field-effect transistor”, Applied Physics Letters 72:3476–8CrossRefGoogle Scholar
  45. 9.45.
    Kumar A, Rajdev D, Douglass DL (1972) “Effect of Oxide Defect Structure on the Electrical Properties of ZrO2” Journal of the American Ceramics Society 55:439Google Scholar
  46. 9.46.
    Kumar A, Ning TH, Fischetti MV, Gusev E (2002) “Hot-Carrier Charge Trapping and Reliability in High-K Dielectrics,” Symposium on VLSI Technology Technical Digest of Papers, pp. 152–3Google Scholar
  47. 9.47.
    Lee CH, Lee JJ, Bai WP, Bae SH, Sim JH, Lei X, Clark RD, Harada Y, Niwa M, Kwong DL (2002) “Self-Aligned Ultra Thin HfO2 CMOS Transistors with High Quality CVD TaN Gate Electrode,” Symposium on VLSI Technology Technical Digest of Papers, pp. 82–3Google Scholar
  48. 9.48.
    Lee JH, Koh K, Lee NI, Cho KH, Kim YK, Jeon JS, Cho KH, Shin HS, Kim MH, Fujihara K, Kang HK, Moon JT (2000) “Effect of polysilicon gate on the flatband voltage shift and mobility degradation for ALD-Al2O3 gate dielectric,” Technical Digest of the International Electron Devices Meeting, pp. 645–8Google Scholar
  49. 9.49.
    Lee JH, Kim YS, Jung HS, Lee JH, Lee HI, Kang HK, Ku JH, Kang HS, Kim YK, Cho KH, Suh KP (2002) “Poly-Si Gate CMOSFETs with HfO2-Al2O3 Laminate Gate Dielectric for Low Power Applications,” Symposium on VLSI Technology Technical Digest of Papers, pp. 84–5Google Scholar
  50. 9.50.
    Lee JH, Ichikawa M (2002) “Analysis of interfacial silicates and silicides formed by annealing ultrathin Hf on SiO2: Effect of Hf/SiO2 thickness ratio,” Journal of Applied Physics 92:1929–1935CrossRefGoogle Scholar
  51. 9.51.
    Lim KY, Park DG, Cho HJ, Kim JJ, Yang JM, Choi IS, Yeo IS, Park JW (2002) “Electrical Characteristics and thermal stability of n+ polycrystalline-Si/ZrO2/SiO2/Si metal-oxide-semiconductor capacitors,” Journal of Applied Physics 91:414–9CrossRefGoogle Scholar
  52. 9.52.
    Lu Q, Lin R, Ranade P, Yeo YC, Meng X, Takeuchi H, King TJ, Hu C, Luan H, Lee S, Bai W, Lee CH, Kwong DL, Guo X, Wang X, Ma TP (2000) “Molybdenum Metal Gate MOS Technology for Post-SiO2 Gate Dielectrics,” Technical Digest of the International Electron Devices Meeting, pp. 641–4Google Scholar
  53. 9.53.
    Lu Q, Lin R, Ranade P, King TJ, Hu C (2001) “Metal gate work function adjustment for future CMOS technology,” Symposium on VLSI Technology Technical Digest of Papers, pp. 45–6Google Scholar
  54. 9.54.
    Lu Q, Takeuchi H, Meng X, King TJ, Hu C, Onishi K, Cho HJ, Lee J (2002) “Improved Performance of Ultra-Thin HfO2 CMOSFETs Using Poly-SiGe Gate,” Symposium on VLSI Technology Technical Digest of Papers, pp. 86–7Google Scholar
  55. 9.55.
    Lucovsky G, Wu Y, Niimi H, Misra V, Phillips JC (1999) “Bonding constraints and defect formation at interfaces between crystalline silicon and advanced single layer and composite gate dielectrics,” Applied Physics Letters 74:2005–7CrossRefGoogle Scholar
  56. 9.56.
    Lucovsky G, Rayner GB (2000) “Microscopic model for enhanced dielectric constants in low concentration SiO2-rich noncrystalline Zr and Hf silicate alloys,” Applied Physics Letters 77:2912–4CrossRefGoogle Scholar
  57. 9.57.
    Lucovsky G, Yang H, Niimi H, Keister J, Rowe J, Thorpe MF, Phillips JC (2000) “Intrinsic limitations on device performance and reliability from bond-constraint induced transition regions at interfaces of stacked dielectrics,” Journal of Vacuum Science and Technology B18:1742–8Google Scholar
  58. 9.58.
    Ma Y, Ono Y, Stecker L, Evans DR, Hsu ST (1999) “Zirconium oxide based gate dielectrics with equivalent oxide thickness of less than 1.0 nm and performance of submicron MOSFET using a nitride gate replacement process,” Technical Digest of the International Electron Devices Meeting, pp. 149–52Google Scholar
  59. 9.59.
    Maria JP, Wickasana D, Kingon AI, Busch B, Schulte H, Garfunkel E, Gustafson T (2001) “High temperature stability in lanthanum and zirconium-based gate dielectrics,” Journal of Applied Physics 90:3476–82CrossRefGoogle Scholar
  60. 9.60.
    Misra V, Heuss GP, Zhong H (2001) “The use of MOS Capacitors to Detect Interactions of Hf and Zr gate electrodes with SiO2 and ZrO2,” Applied Physics Letters 78:4166–8CrossRefGoogle Scholar
  61. 9.61.
    Misra V, Zhong H. Lazar H (2002) “Electrical Properties of Ru-Based Alloy Gate Electrodes for Dual Metal Gate Si-CMOS,” IEEE Electron Device Letters 23:354–6CrossRefGoogle Scholar
  62. 9.62.
    Miyazaki S, “Photoemission study of energy-band alignments and gap-state density distributions for high-k dielectrics”, J. Vacuum Science and Technology B19:2212–16Google Scholar
  63. 9.63.
    Muller DA, Sorsch T, Moccio S, Baumann FH, Evans-Lutterodt K, Timp G (1999) “The electronic structure at the atomic scale of ultrathin gate oxides”, Nature 399:758–61CrossRefGoogle Scholar
  64. 9.64.
    Muller DA, Wilk GD (2001) “Atomic scale measurements of the interfacial electronic structure and chemistry of zirconium silicate gate dielectrics,” Applied Physics Letters 79:4195–7CrossRefGoogle Scholar
  65. 9.65.
    Murarka SP (1983) “Silicides for VLSI Applications” (Academic Press, New York)Google Scholar
  66. 9.66.
    Murtaza S, Hu J, Unnikrishnan S, Rodder M, Chen I (1998) “Feasibility study to determine the suitability of using TiN/W and Si1−xGex as alternative gate materials for sub-0.1-um gate-length PMOS devices”, Proceedings of the SPIE 3506:49CrossRefGoogle Scholar
  67. 9.67.
    Neumeyer DA, Cartier E (2001) “Materials characterization of ZrO2-SiO2 and HfO2-SiO2binary oxides deposited by chemical solution deposition,” Journal of Applied Physics 90:1801–8CrossRefGoogle Scholar
  68. 9.68.
    Niu D, Ashcraft RW, Kelly M J, Chambers JJ, Klein TM, Parsons GN (2002) “Elementary reaction schemes for physical and chemical vapor deposition of transition metal oxides on silicon for high-κ gate dielectric applications,” Journal of Applied Physics 91:6173–80CrossRefGoogle Scholar
  69. 9.69.
    Onishi K, Kang L, Choi R, Dharmarajan E, Gopalan S, Jeon Y, Kang C, Lee B, Nieh R, Lee JC (2001) “Dopant penetration effects on polysilicon gate HfO2 MOSFET's” Symposium on VLSI Technology Technical Digest of Papers, p. 131Google Scholar
  70. 9.70.
    Onishi K, Kang L, Choi R, Cho HJ, Gopalan S, Nieh R, Dharmarajan E, Lee JC, (2001) “Reliability characteristics, including NBTI, of polysilicon gate HfO2 MOSFET's” Technical Digest of the International Electron Devices Meeting, pp. 30.3.1–4Google Scholar
  71. 9.71.
    Opila RL, Wilk GD, Alam MA, van Dover RB, Busch B (2002) “Photoemission study of Zr-and Hf-silicates for use as high-κ oxides: Role of second nearest neighbors and interface charge” Applied Physics Letters (in press)Google Scholar
  72. 9.72.
    Pankratz LB (1982) “Thermodynamic Properties of Elements and Oxides,” (U.S. Dept. of Interior, Bureau of Mines Bulletin 672, U.S. Govt. Printing Office, Washington, D.C., 1982)Google Scholar
  73. 9.73.
    Pantisano L, Lucci L, Cartier E, Kerber A, Groeseneken G, Green M, Selmi L, “Impact of band structure on charge trapping in thin SiO2/Al2O3/poly-Si gate stacks,” IEEE Electron Device Letters 25:320–2Google Scholar
  74. 9.74.
    Park DG, Cho H, Yeo IS, Roh JA, Hwang JM (2000) “Boron penetration in p+ polycrystalline-Si/Al2O3/Si metal-oxide-semiconductor system” Applied Physics Letters 77:2207–9CrossRefGoogle Scholar
  75. 9.75.
    Park DG, Lim KY, Cho HJ, Kim JJ, Yang JM, Ko J, Yeo IS, Park JW, de Waard H, Tuominem M (2002) “Boron penetration and thermal instability of p+ polycrystalline-Si/ZrO2/SiO2/n-Si metal-oxide-semiconductor structures” Journal of Applied Physics 91:65–8CrossRefGoogle Scholar
  76. 9.76.
    Philips JC (2000) “Stress and defects in silicate films and glasses,” Journal of Vacuum Science and Technology B18:1749–51Google Scholar
  77. 9.77.
    Pidin S, Morisaki Y, Sugita Y, Aoyama T, Irino K, Nakamura T, Sugii T (2002) “Low Standby Power CMOS with HfO2 Gate Oxide for 100-nm Generation,” Symposium on VLSI Technology Technical Digest of Papers, p. 28–9Google Scholar
  78. 9.78.
    Polishchuk I, Ranade P, King TJ, Hu C (2001) “Dual work function metal gate CMOS technology using metal interdiffusion” IEEE Electron Device Letters 22:444–6CrossRefGoogle Scholar
  79. 9.79.
    Ritala M, Leskelä M (2002) “Atomic Layer Deposition,” in Handbook of Thin Films Materials, Vol. 1: Deposition and Processing of Thin Films, ed. Nalwa HS, Academic Press, pp. 103–159Google Scholar
  80. 9.80.
    Qi WJ, Nieh R, Dharmarajan E, Lee BH, Jeon Y, Kang L, Onishi K, Lee JC (2000) “Ultrathin zirconium silicate film with good thermal stability for alternative gate dielectric application,” Applied Physics Letters 77:1704–6CrossRefGoogle Scholar
  81. 9.81.
    Quevedo-Lopez M, El-Bouanani M, Addepalli S, Duggan JL, Gnade BE, Wallace RM, Visokay MR, Douglas M, Bevan MJ, Colombo L (2001) “Thermally induced Zr incorporation into Si from zirconium silicate thin films,” Applied Physics Letters 79:2958–60CrossRefGoogle Scholar
  82. 9.82.
    Quevedo-Lopez M, El-Bouanani M, Addepalli S, Duggan JL, Gnade BE, Wallace RM, Visokay MR, Douglas M, Colombo L (2001) “Hafnium interdiffusion studies from hafnium silicate into silicon,” Applied Physics Letters 79:4192–4CrossRefGoogle Scholar
  83. 9.83.
    Quevedo-Lopez M, El-Bouanani M, Kim MJ, Gnade BE, Visokay MR, LiFatou A, Bevan MJ, Colombo L, Wallace RM (2002) “Boron Penetration in p+ Polycrystalline-Si / HfSixOy / Si(100) Systems,” Applied Physics Letters 81:1074–6CrossRefGoogle Scholar
  84. 9.84.
    Quevedo-Lopez M, El-Bouanani M, Kim MJ, Gnade BE, Visokay MR, LiFatou A, Bevan MJ, Colombo L, Wallace RM (2002) “Phosphorus and Arsenic Penetration Studies through HfSixOy and HfSixOyNz films,” Applied Physics Letters 81:1609–11CrossRefGoogle Scholar
  85. 9.85.
    Quevedo-Lopez M, El-Bouanani M, Gnade BE, Wallace RM, Visokay MR, Douglas M, Beven MJ, Colombo L (2002c) “Interdiffusion studies for HfSixOy and ZrSixOy on Si,” Journal of Applied Physics 92:3540–50CrossRefGoogle Scholar
  86. 9.86.
    Ragnarsson LA, Guha S, Copel M, Cartier E, Bojarczuk NA, Karasinski J (2001) “Molecular-beam-deposited yttrium-oxide dielectrics in aluminum-gated metal-oxide-semiconductor field-effect transistors: Effective electron mobility,” Applied Physics Letters 78:4169–4171CrossRefGoogle Scholar
  87. 9.87.
    Rios R, Arora ND (1994) “Determination of ultra-thin gate oxide thick-nesses for CMOS structures using quantum effects”, Technical Digest of the International Electron Devices Meeting, p. 613–6Google Scholar
  88. 9.88.
    Robertson J, Chen CW (1999) “Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate”, Applied Physics Letters 74:1168–70CrossRefGoogle Scholar
  89. 9.89.
    Robertson J (2000) “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vacuum Science and Technology B18:1785–91CrossRefGoogle Scholar
  90. 9.90.
    Robertson J (2002) “Band offsets of high dielectric constant gate oxides on silicon,” J. Non-Crystalline Solids 303:94–100CrossRefGoogle Scholar
  91. 9.91.
    Rotondaro ALP, Visokay MR, Chambers JJ, Shanware A, Khamankar R, Bu H, Laaksonen RT, Tsung L, Douglas M, Kuan R, Bevan MJ, Grider T, McPherson J, Colombo L (2002) “Advanced CMOS Transistors with a Novel HfSiON Gate Dielectric,” Symposium on VLSI Technology Technical Digest of Papers, pp. 148–9Google Scholar
  92. 9.92.
    Samavedam SB, Tseng HH, Tobin PJ, Mogab J, Dakshina-Murthy S, La LB, Smith J, Schaeffer J, Zavala M, Martin R, Nguyen BY, Hebert L, Adetutu O, Dhandapani V, Luo TY, Garcia R, Abramowitz P, Moosa M, Gilmer CC, Hobbs C, Taylor WJ, Grant J, Hegde R, Bagchi S, Luckowski E, Arunachalam V, Azrak M (2002) “Metal Gate MOSFETs with HfO2 Gate Dielectric,” Symposium on VLSI Technology Technical Digest of Papers, p. 24–5Google Scholar
  93. 9.93.
    Sayan S, Garfunkel E, Suzer S (2002), “Soft x-ray photoemission studies of the HfO2 /SiO2/Si system,” Applied Physics Letters 80:2135–7CrossRefGoogle Scholar
  94. 9.94.
    Schlom D, Haeni J (2002) “A Thermodynamic Approach to Selecting Alternative Gate Dielectrics,” Materials Research Society Bulletin 27:198–204Google Scholar
  95. 9.95.
    Seidel T, Ramanathan S, Londergan A, Lee E, Jansz A (2002) “Pathways in competitiveness for atomic layer deposition,” Proceedings of the AVS 3rd International Conference on Microelectronics and Interfaces, February 11–14, Santa Clara, CA, pp. 34–7Google Scholar
  96. 9.96.
    SIA (2001) “International Technology Roadmap for Semiconductors”, Semiconductor Industry Association. See: http://public.itrs.net/Google Scholar
  97. 9.97.
    Sneh O, Clark-Phelps RB, Londergan AR, Winkler J, Seidel TE (2002) “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402:248–61CrossRefGoogle Scholar
  98. 9.98.
    Suh YS, Heuss GP, Zhong H, Hong SN, Misra V (2001) “Electrical characteristics of TaSiN gate electrodes for Dual Gate CMOS”, Symposium on VLSI Technology Technical Digest of Papers, p. 47Google Scholar
  99. 9.99.
    Suh YS, Heuss GP, Misra V (2002) “Electrical characteristics of TaSixNy/SiO2/Si structures by Fowler-Nordheim current analysis”, Applied Physics Letters 80:1403–5CrossRefGoogle Scholar
  100. 9.100.
    Tang S, Wallace RM, Seabaugh A, King-Smith D (1998) “Evaluating the minimum thickness of gate oxide on silicon using first-principles method,“ Applied Surface Science 135:137–42CrossRefGoogle Scholar
  101. 9.101.
    Tanida Y, Tamura Y, Miyagaki S, Yamaguchi M, Yoshida C, Sugiyama Y, Tanaka H (2002) “Effect of In-Situ Nitrogen Doping into MOCVD-Grown Al2O3 to Improve Electrical Characteristics of MOSFETs with Polysilicon Gate,” Symposium on VLSI Technology Technical Digest of Papers, p. 190Google Scholar
  102. 9.102.
    Timp G, Agarwal A, Baumann FH, Boone T, Buonanno M, Cirelli R, Donnelly V, Foad M, Grant D, Green M, Gossmann H, Hillenius S, Jackson J, Jacobson D, Kleiman R, Komblit A, Klemens F, Lee JT-C, Mansfield W, Moccio S (1997) “Low leakage, ultra-thin gate oxides for extremely high performance sub-100nm nMOSFETs”, Technical Digest of the International Electron Devices Meeting, pp. 930–2Google Scholar
  103. 9.103.
    Torii K, Shimamoto Y, Saito S, Tonomura O, Hiratani M, Manabe Y, Caymax M, Maes JW (2002) “The Mechanism of Mobility Degradation in MISFETs with Al2O3 Gate Dielectric,” Symposium on VLSI Technology Technical Digest of Papers, pp. 188–9Google Scholar
  104. 9.104.
    Tuominen M, Kanniainen T, Haukka S (2000) “High-k oxides by atomic layer chemical vapour deposition,” Proceedings of the Electrochemical Society 2000-9:271–282Google Scholar
  105. 9.105.
    Uejima K, Yamamoto T, Mogami T (2000) “Highly reliable poly-SiGe/amorphous-Si gate CMOS,” Technical Digest of the International Electron Devices Meeting, pp. 445–8Google Scholar
  106. 9.106.
    Visokay MR, Chambers JJ, Rotondaro ALP, Shanware A, Colombo L (2002) “Application of HfSiON as a gate dielectric material,” Applied Physics Letters 80:3183–5CrossRefGoogle Scholar
  107. 9.107.
    Vogel EM, Ahmed KZ, Hornung B, Kirklen-Henson W, Mclarty PK, Lucovsky G, Hauser J, Wortman JJ (1998) “Modeled tunnel currents for high dielectric constant dielectrics”, IEEE Transactions on Electron Devices 45:1350–5CrossRefGoogle Scholar
  108. 9.108.
    Wallace RM, Stolz RA, Wilk GD (2000) US Patents 6,013,553; 6,020,243; 6,291,866; 6,291,867Google Scholar
  109. 9.109.
    Wallace RM, Wilk G (2002) “High-κ Gate Dielectric Materials,” Materials Research Society Bulletin, March, pp. 192–7; also see this focus issue for reviews of other aspects on gate dielectric issuesGoogle Scholar
  110. 9.110.
    Wang SQ, Mayer JW (1988) “Reactions of Zr thin films with SiO2 substrates,” J. Applied Physics 64:4711–6CrossRefGoogle Scholar
  111. 9.111.
    Watanabe H (2001) “Interface engineering of a ZrO2/SiO2/Si layered structure by in situ reoxidation and its oxygen-pressure-dependent thermal stability” Applied Physics Letters 78:3803–5CrossRefGoogle Scholar
  112. 9.112.
    Wilk GD, Wallace RM (1999) “Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon,” Applied Physics Letters 74:2854–6CrossRefGoogle Scholar
  113. 9.113.
    Wilk GD, Wallace RM (2000) “Stable zirconium silicate gate dielectrics deposited directly on silicon,” Applied Physics Letters 76:112–4CrossRefGoogle Scholar
  114. 9.114.
    Wilk GD, Wallace RM, Anthony JM (2000) “Hafnium and zirconium silicates for advanced gate dielectrics,” Journal of Applied Physics 87:484–92CrossRefGoogle Scholar
  115. 9.115.
    Wilk GD, Wallace RM, Anthony JM (2001) “High-k Gate Dielectrics: Current Status and Materials Properties Considerations”, Journal of Applied Physics 89:5243–75CrossRefGoogle Scholar
  116. 9.116.
    Wilk G, Green M, Ho MY, Busch B, Sorsch T, Klemens F, Brijs B, van Dover R, Kornblit A, Gustafsson T, Garfunkel E, Hillenius S, Monroe D, Kalavade P, Hergenrother J (2002) “Improved Film Growth and Flatband Voltage Control of ALD HfO2 and Hf-Al-O with n+ Poly-Si Gates Using Chemical Oxides and Optimized Post-Annealing,” Symposium on VLSI Technology Technical Digest of Papers, pp. 88–9Google Scholar
  117. 9.117.
    Wong CY, Sun JY, Taur Y, Oh CS, Angelucci R, Davari B (1988) “Doping of n+ and p+ polysilicon in a dual-gate CMOS process”, Technical Digest of the International Electron Devices Meeting, pp. 238–41Google Scholar
  118. 9.118.
    Yang K, King Y-C, Hu C (1999) “Quantum Effect in Oxide Thickness Determination From Capacitance Measurement”, Symposium on VLSI Technology Technical Digest of Papers, pp. 77–78Google Scholar
  119. 9.119.
    Yamaguchi T, Satake H, Fukushima N, Toriumi A (2000) “Band Diagram and Carrier Conduction Mechanism in ZrO2/Zr-silicate/Si MIS Structure Fabricated by Pulsed Laser-ablation Deposition,” Technical Digest of the International Electron Devices Meeting, pp. 19–22Google Scholar
  120. 9.120.
    Yamaguchi T, Satake H, Fukushima N, (2001) “Degradation of Current Drivability by the Increase of Zr Concentrations in Zr-silicate,” Technical Digest of the International Electron Devices Meeting, pp. 30.4.1–4Google Scholar
  121. 9.121.
    Yeo YC, Ranade P, Lu Q, Lin R, King TJ, Hu C (2001) “Effects of high-κ dielectrics on the workfunctions of metal and silicon gates,” Symposium on VLSI Technology Technical Digest of Papers, pp. 49–50Google Scholar
  122. 9.122.
    Yeo YC, Ranade P, King TJ, Hu C (2002) “Effects of High-k Gate Dielectric Materials on Metal and Silicon Gate Workfunctions,” IEEE Electron Device Letters 23:342–4CrossRefGoogle Scholar
  123. 9.123.
    Zhong H, Heuss GP, Misra V (2000) “Electrical Properties of RuO2 gates for Dual Gate CMOS,” IEEE Electron Device Letters 21:593–5CrossRefGoogle Scholar
  124. 9.124.
    Zhong H, Heuss GP, Misra V, Luan H, Lee CH, Kwong DL (2001) “Characterization of RuO2 Electrodes on ZrSiO4and ZrO2 Dielectrics for Si-PMOSFETs”, Applied Physics Letters 78:1134–6CrossRefGoogle Scholar
  125. 9.125.
    Zhong H, Hong SN, Suh YS, Lazar H, Heuss G, Misra V (2001) “Properties of Ru-Ta Alloys as Gate Electrodes For NMOS and PMOS Silicon Devices,” Technical Digest of the IEEE International Electron Device Meeting, pp. 567–70Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • R.M. Wallace
  • G.D. Wilk

There are no affiliations available

Personalised recommendations