Optimal Scaling Methodologies and Transistor Performance

  • T. Skotnicki
  • F. Boeuf
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 16)


Virtual Cathode Gate Leakage Schottky Junction Double Gate Equivalent Oxide Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 6.1.
    R.H. Denard et al., IEEE J. SSC, pp. 256–268, Sept. 1974Google Scholar
  2. 6.2.
    ITRS (International Technology Roadmap for Semiconductors), 1999 EditionGoogle Scholar
  3. 6.3.
    ITRS (International Technology Roadmap for Semiconductors), 2001 EditionGoogle Scholar
  4. 6.4.
    T. Skotnicki et al., A New Analog/Digital CAD model for Sub-Halfmicron MOSFETs, 1994 IEDM Tech. Digest, pp. 165–168Google Scholar
  5. 6.5.
    T. Skotnicki, Rep. French Acad. of Science Tom 1, Series IV, pp. 885–909, Paris 2000Google Scholar
  6. 6.6.
    T. Skotnicki, Heading for decananometer CMOS — Is navigation among icebergs still a viable strategy? Proceedings of ESSDERC 2000, pp. 19–33Google Scholar
  7. 6.7.
    T. Skotnicki, Transistor MOS et sa technologie de fabrication (in French), Encyclopedia Techniques de l'Ingénieur, Traité Electronique, E2 430, Paris 2000Google Scholar
  8. 6.8.
    K. Chen et al., The Impact of Device Scaling and Power Supply Change on CMOS Gate Performance, IEEE Elec. Dev. Lett., pp. 202–204, May 1996Google Scholar
  9. 6.9.
    S. Takagi et al., On the universality of inversion-layer mobility in n-and p-channel MOSFETs, IEDM'88, Tech. Digest, pp. 398–401Google Scholar
  10. 6.10.
    S. Thompson, IEDM'99, Short courseGoogle Scholar
  11. 6.11.
    T. Skotnicki et al., The Voltage-Doping Transformation: A New Approach to the Modeling of MOSFET Short-Channel Effects, Elec. Dev. Lett. 9, No. 3, 1988Google Scholar
  12. 6.12.
    T. Skotnicki et al., A New Punch-through Model based on the Voltage Doping Transformation, IEEE Trans. Elec. Dev, pp. 1067–1086, 1988Google Scholar
  13. 6.13.
    T. Skotnicki et al., Analytical Study of Punchthrough in Buried Channel p-MOSFETs, IEEE Trans. Elec. Dev 36, No. 4, 1989Google Scholar
  14. 6.14.
    D. Bazley and S. Jones, HUNT, EU IST projectGoogle Scholar
  15. 6.15.
    E. Josse et al., Polysilicon Gate with Depletion-or-Metallic Gate with buried Channel: what evil worse ? IEDM'99, Tech. Digest, pp. 661–664Google Scholar
  16. 6.16.
    C-Y. Wu et al., Quantization effects in inversion layers of PMOSFETs on Si (100) substrates, IEEE Elec. Dev. Lett. 17, No. 6, June 1996, pp. 276–278Google Scholar
  17. 6.17.
    Osborn et al., Gate leakage simulations with UQANT, NCSU, ITRS Working GroupGoogle Scholar
  18. 6.18.
    Y. Taur and E.J. Nowak, 1997 IEDM, Tech. Digest, pp. 215–218Google Scholar
  19. 6.19.
    D. Lenoble, Proc. Int. Workshop on Junction Technology, pp. 29–34, Tokyo 2001Google Scholar
  20. 6.20.
    S.J. Chang et al., High-Performance and High-Reliability 80-nm gate-length DTMOS with Indium Super Steep Retrograde Channel, Trans. Elec. Dev. Lett. 47, No. 12, pp. 2379–2384 (2000)Google Scholar
  21. 6.21.
    S-F. Huang et al., Carrier mobility enhancement in strained Si-on-insulator fabricated by wafer bonding, Proceedings of 2001 Symp. VLSI Technology, pp. 107–108Google Scholar
  22. 6.22.
    T. Skotnicki, Proceedings Short Course Nanoscale Technologies, ESSDERC 2000Google Scholar
  23. 6.23.
    A. Ono et al, A 70nm Gate Length CMOS Technology with 1.0V Operation, Proceedings of 2000 Symp. VLSI Technology, pp. 14–15Google Scholar
  24. 6.24.
    S. Verdonckt-Vanderbroek et al., SiGe Channel Heterojunction p-MOSFET's, IEEE, Trans. Elec. Dev. 41, No. 8, 1994, pp. 92–101Google Scholar
  25. 6.25.
    V.P. Kesan et al., High performance 0.25 µm p-MOSFETs with silicon-germanium channels for 300K and 77K operation, IEDM'91, Tech. Digest, pp. 25–28Google Scholar
  26. 6.26.
    P. Bouillon et al., Search for the optimal channel architecture for 0.18/0.12µm bulk CMOS Experimental study, IEDM 1996, Tech. Digest, pp. 559–562Google Scholar
  27. 6.27.
    J. Alieu et al., Optimisation of Si0.7Ge0.3 Channel Heterostructures for 0.15/0.18 µm CMOS Process, Proceedings of ESSDERC'98, pp. 144–147Google Scholar
  28. 6.28.
    J. Alieu et al., Multiple SiGe well: A new channel architecture for improving both NMOS and PMOS performances, Proceedings of 2000 Symp. VLSI Technology, pp. 130–131Google Scholar
  29. 6.29.
    H. Shang et al., High Mobility p-channel Germanium MOSFETs with a thin Ge Oxynitride Gate Dielectric, IEDM 2002, Tech. Digest, pp. 441–444Google Scholar
  30. 6.30.
    S. Thompson et al., A 90 nm Logic Technology Featuring 50nm Strained Silicon Channel Transistors, 7 layers of Cu Interconnects, Low k ILD, and 1 µm2 SRAM Cell, IEDM 2002, Tech. Digest, pp. 61–62Google Scholar
  31. 6.31.
    K. Rim et al., Transconductance enhancement in deep submicron strained Si n-MOSFETs, IEDM'98, Tech. Digest, pp. 707–710Google Scholar
  32. 6.32.
    M. Jurczak et al., Study on enhanced performance in NMOSFETs on strained Silicon, Proceedings of ESSDERC'99, pp. 304–307Google Scholar
  33. 6.33.
    K. Rim et al., Strained Si NMOSFETs for high performance CMOS technology, Proceedings of 2001 Symp. VLSI Technology, pp. 59–60Google Scholar
  34. 6.34.
    A. Toriumi, FED J. Vol. 3,Suppl. 2, 1993Google Scholar
  35. 6.35.
    R. Oberhuber et al., Mobility enhancement of two-dimensional holes in strained Si/SiGe MOSFETs, Proceedings of ESSDERC '98, pp. 525–527 (1998)Google Scholar
  36. 6.36.
    Q. Lu et al., Dual Metal Gate Technology for Deep-Submicron CMOS Transistors, Proceedings of 2000 Symp. VLSI Technology, pp. 72–73Google Scholar
  37. 6.37.
    M. Jurczak et al., Silicon-On-Nothing (SON), an Innovative Process for Advanced CMOS, SON, IEEE TED 47, No. 11, 2000, pp. 2179–2187Google Scholar
  38. 6.38.
    S. Monfray et al., 50nm Gate-All-Around (GAA) — Silicon On Nothing (SON) — Devices: A simple way to co-integration of GAA transistors within bulk process, Proceedings of 2002 Symp. VLSI Technology, pp 108–109Google Scholar
  39. 6.39.
    Y.K. Choi et al., Sub-20nm CMOS FinFET Technologies, IEDM 2001, Tech. Digest, pp. 421–424Google Scholar
  40. 6.40.
    F.L. Yang et al., 25nm CMOS Omega FETs, IEDM 2002, Tech. Digest, pp. 255–262Google Scholar
  41. 6.41.
    R. Chau et al., Proceedings of SSDM'02, pp. 68–69Google Scholar
  42. 6.42.
    J.M. Hergenrother et al., The vertical replacement gate (VRG) MOSFET: A 50-nm vertical MOSFET with lithography-independent gate length, IEDM 1999, Tech. Digest, p. 75Google Scholar
  43. 6.43.
    D. Hisamoto et al., A fully Depleted Lean-Channel Transistor (DELTA) — A Novel vertical ultra thin SOI MOSFET, IEDM 1989, Tech. Digest, pp. 833–836Google Scholar
  44. 6.44.
    H. Takato, High performance CMOS Surrounding Gate (SGT) for Ultra High Density LSIs, IEDM 1988, Tech. Digest, pp. 222–225Google Scholar
  45. 6.45.
    D. Antoniadis, MOSFET Scalability Limites and “new frontier” devices, Proceedings of 2002 Symp. VLSI Technology, pp. 2–3Google Scholar
  46. 6.46.
    F. Ballestra et al., Double Gate Silicon on insulator transistor with volume inversion: A new device with greatly enhanced performances, IEEE, Elec. Dev. Lett. 8, pp. 410–412, 1987Google Scholar
  47. 6.47.
    F. Boeuf et al., 16nm planar NMOSFET manufacturable within state-of-the-art CMOS process thanks to specific design and optimization, IEDM 2001, Tech. Digest, pp. 637–640Google Scholar
  48. 6.48.
    S. Monfray et al., SON p-MOSFET with totally silicided (CoSi2) polysilicon on 5 nm-thick Si-films: The simplest way to integration of Metal Gates on thin FD channels, Tech. Digest, IEDM'02, pp. 263–266Google Scholar
  49. 6.49.
    S. Monfray et al., Self consistent Optimization and Performance Analysis of Double Gate MOS Transistor, Proceeding of ESSDERC 2000, pp. 337–339Google Scholar
  50. 6.50.
    K. Uchida et al., Experimental Study on Carrier Transport Mechanism in Ultrathin-Body SOI n-and p-MOSFETs With SOI Thickness less than 5 nm, IEDM 2002, Tech. Digest, pp. 47–50Google Scholar
  51. 6.51.
    D. Esseni et al., Study of Low Field transport in Ultra-Thin Single and Double gate SOI MOSFETs, IEDM 2002, Tech. Digest, pp. 719–722Google Scholar
  52. 6.52.
    A. Asenov et al., Modelling End-of-the-Roadmap Transistors, Proc. ECS Paris 2003, volume 2003-06, pp. 306–321Google Scholar
  53. 6.53.
    R.K Cavin et al., Semiconductor Research Corp., Limit to Binary Logic Switch Scaling — A Gedanken Model, to be publishedGoogle Scholar
  54. 6.54.
    S. Harrison et al., Highly performant double gate MOSFET realized with SON process, IEDM 2003 Techn. Digest, pp. 449–452Google Scholar
  55. 6.55.
    T. Park et al., Static noise margin of the full DG-CMOS SRAM Cell using bulk FinFETs (Omega MOSFETs), IEDM 2003 Techn. Digest, pp. 27–30Google Scholar
  56. 6.56.
    K. Uchida et al., Experimental study on carrier transport mechanism in ultrathin-body SOI n-and p-MOSFETs with SOI thickness less than 5 nm, IEDM 2002 Techn. Digest, pp. 47–50Google Scholar
  57. 6.57.
    K. Uchida et al., Experimental study on carrier transport mechanism in double-and single-gate ultrathin-body MOSFETs — Coulomb scattering, volume inversion, and δTsoi-induced scattering, IEDM 2003 Techn. Digest, pp. 805–808Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • T. Skotnicki
  • F. Boeuf

There are no affiliations available

Personalised recommendations